Beijuka's picture
End of training
9399160 verified
metadata
library_name: transformers
language:
  - sn
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - DigitalUmuganda/Afrivoice
metrics:
  - wer
model-index:
  - name: facebook/wav2vec2-xls-r-300m
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Afrivoice
          type: DigitalUmuganda/Afrivoice
        metrics:
          - name: Wer
            type: wer
            value: 0.3289275474998785

facebook/wav2vec2-xls-r-300m

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the Afrivoice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3536
  • Wer: 0.3289
  • Cer: 0.0684

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.8923 1.0 1885 0.3250 0.4671 0.0874
0.2338 2.0 3770 0.2228 0.3238 0.0547
0.1887 3.0 5655 0.2019 0.2795 0.0479
0.1641 4.0 7540 0.1987 0.2836 0.0493
0.1445 5.0 9425 0.1932 0.2673 0.0455
0.1251 6.0 11310 0.1969 0.2710 0.0457
0.1082 7.0 13195 0.2057 0.2623 0.0441
0.0929 8.0 15080 0.2181 0.2676 0.0451
0.0796 9.0 16965 0.2352 0.2678 0.0448
0.0671 10.0 18850 0.2427 0.2725 0.0460
0.0575 11.0 20735 0.2593 0.2709 0.0451
0.0492 12.0 22620 0.2744 0.2789 0.0460
0.0427 13.0 24505 0.2792 0.2763 0.0456
0.0389 14.0 26390 0.2831 0.2871 0.0461
0.034 15.0 28275 0.2987 0.2734 0.0446
0.0322 16.0 30160 0.3052 0.2806 0.0450
0.0298 17.0 32045 0.3148 0.2713 0.0443

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.2.0+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1