metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: malayalam_combined_
results: []
malayalam_combined_
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5153
- Wer: 0.5077
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.8243 | 0.2031 | 500 | 0.8413 | 0.6658 |
0.7336 | 0.4063 | 1000 | 0.7351 | 0.6251 |
0.6824 | 0.6094 | 1500 | 0.6786 | 0.5956 |
0.6489 | 0.8125 | 2000 | 0.6836 | 0.6075 |
0.585 | 1.0156 | 2500 | 0.6295 | 0.5864 |
0.5917 | 1.2188 | 3000 | 0.6166 | 0.5579 |
0.56 | 1.4219 | 3500 | 0.6006 | 0.5646 |
0.5736 | 1.6250 | 4000 | 0.6268 | 0.5643 |
0.5821 | 1.8282 | 4500 | 0.6216 | 0.5786 |
0.5505 | 2.0313 | 5000 | 0.5705 | 0.5379 |
0.5065 | 2.2344 | 5500 | 0.5864 | 0.5460 |
0.5004 | 2.4375 | 6000 | 0.5555 | 0.5259 |
0.5327 | 2.6407 | 6500 | 0.5539 | 0.5255 |
0.5148 | 2.8438 | 7000 | 0.5584 | 0.5457 |
0.4751 | 3.0469 | 7500 | 0.5389 | 0.5208 |
0.4779 | 3.2501 | 8000 | 0.5284 | 0.5102 |
0.4874 | 3.4532 | 8500 | 0.5300 | 0.5084 |
0.4955 | 3.6563 | 9000 | 0.5248 | 0.5125 |
0.4961 | 3.8594 | 9500 | 0.5116 | 0.5061 |
0.4449 | 4.0626 | 10000 | 0.5257 | 0.5122 |
0.48 | 4.2657 | 10500 | 0.5254 | 0.5046 |
0.4513 | 4.4688 | 11000 | 0.5364 | 0.5232 |
0.4698 | 4.6719 | 11500 | 0.5293 | 0.5106 |
0.4674 | 4.8751 | 12000 | 0.5153 | 0.5077 |
Framework versions
- Transformers 4.43.0.dev0
- Pytorch 1.14.0a0+44dac51
- Datasets 2.16.1
- Tokenizers 0.19.1