malayalam_combined_ / README.md
akrishnan's picture
Training in progress, step 500
6ddda80 verified
|
raw
history blame
3.14 kB
metadata
license: mit
base_model: facebook/w2v-bert-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: malayalam_combined_
    results: []

Visualize in Weights & Biases

malayalam_combined_

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5153
  • Wer: 0.5077

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.8243 0.2031 500 0.8413 0.6658
0.7336 0.4063 1000 0.7351 0.6251
0.6824 0.6094 1500 0.6786 0.5956
0.6489 0.8125 2000 0.6836 0.6075
0.585 1.0156 2500 0.6295 0.5864
0.5917 1.2188 3000 0.6166 0.5579
0.56 1.4219 3500 0.6006 0.5646
0.5736 1.6250 4000 0.6268 0.5643
0.5821 1.8282 4500 0.6216 0.5786
0.5505 2.0313 5000 0.5705 0.5379
0.5065 2.2344 5500 0.5864 0.5460
0.5004 2.4375 6000 0.5555 0.5259
0.5327 2.6407 6500 0.5539 0.5255
0.5148 2.8438 7000 0.5584 0.5457
0.4751 3.0469 7500 0.5389 0.5208
0.4779 3.2501 8000 0.5284 0.5102
0.4874 3.4532 8500 0.5300 0.5084
0.4955 3.6563 9000 0.5248 0.5125
0.4961 3.8594 9500 0.5116 0.5061
0.4449 4.0626 10000 0.5257 0.5122
0.48 4.2657 10500 0.5254 0.5046
0.4513 4.4688 11000 0.5364 0.5232
0.4698 4.6719 11500 0.5293 0.5106
0.4674 4.8751 12000 0.5153 0.5077

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 1.14.0a0+44dac51
  • Datasets 2.16.1
  • Tokenizers 0.19.1