Model for Dimensional Speech Emotion Recognition based on Wav2vec 2.0
Please note that this model is for research purpose only. A commercial license for a model that has been trained on much more data can be acquired with audEERING. The model expects a raw audio signal as input, and outputs predictions for arousal, dominance and valence in a range of approximately 0...1. In addition, it provides the pooled states of the last transformer layer. The model was created by fine-tuning Wav2Vec2-Large-Robust on MSP-Podcast (v1.7). The model was pruned from 24 to 12 transformer layers before fine-tuning. An ONNX export of the model is available from doi:10.5281/zenodo.6221127. Further details are given in the associated paper and tutorial.
Usage
import numpy as np
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import (
Wav2Vec2Model,
Wav2Vec2PreTrainedModel,
)
class RegressionHead(nn.Module):
r"""Classification head."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class EmotionModel(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = RegressionHead(config)
self.init_weights()
def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)
return hidden_states, logits
# load model from hub
device = 'cpu'
model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = EmotionModel.from_pretrained(model_name).to(device)
# dummy signal
sampling_rate = 16000
signal = np.zeros((1, sampling_rate), dtype=np.float32)
def process_func(
x: np.ndarray,
sampling_rate: int,
embeddings: bool = False,
) -> np.ndarray:
r"""Predict emotions or extract embeddings from raw audio signal."""
# run through processor to normalize signal
# always returns a batch, so we just get the first entry
# then we put it on the device
y = processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = y.reshape(1, -1)
y = torch.from_numpy(y).to(device)
# run through model
with torch.no_grad():
y = model(y)[0 if embeddings else 1]
# convert to numpy
y = y.detach().cpu().numpy()
return y
print(process_func(signal, sampling_rate))
# Arousal dominance valence
# [[0.5460754 0.6062266 0.40431657]]
print(process_func(signal, sampling_rate, embeddings=True))
# Pooled hidden states of last transformer layer
# [[-0.00752167 0.0065819 -0.00746342 ... 0.00663632 0.00848748
# 0.00599211]]
- Downloads last month
- 54,627