lewtun's picture
lewtun HF staff
Add evaluation results on the mrpc config and validation split of glue
5c0312b
|
raw
history blame
1.81 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: natural-language-inference
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
config: mrpc
split: train
args: mrpc
metrics:
- type: accuracy
value: 0.8284313725490197
name: Accuracy
- type: f1
value: 0.8821548821548822
name: F1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# natural-language-inference
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4120
- Accuracy: 0.8284
- F1: 0.8822
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 230 | 0.4288 | 0.8039 | 0.8644 |
| No log | 2.0 | 460 | 0.4120 | 0.8284 | 0.8822 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1