metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: natural-language-inference
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
config: mrpc
split: train
args: mrpc
metrics:
- type: accuracy
value: 0.8284313725490197
name: Accuracy
- type: f1
value: 0.8821548821548822
name: F1
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: mrpc
split: validation
metrics:
- type: accuracy
value: 0.8284313725490197
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2M5YTZkYzE2NWFiYmNiNjljMjEzOWFkMzUyNDNhZmY0YjVjZmVlYjYzYzVmYTQyOGRiOTkyM2ZlZjMyMDVjMSIsInZlcnNpb24iOjF9.UjLZUc4z71OQewLCeA3tNjUpiZ8RfoojFDZBbC1hAAGUu38PKHg9EjLLE9_xV_Q0UrlQZnU_1gCjisczRnuRBQ
- type: precision
value: 0.8317460317460318
name: Precision
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDUwN2JjZTgwYzI5MWJjYTY4ZjJmZmI1MzMyNzdkMmU3MzZmOGIzNDg1NjljYzQ3NDM4NDI3ZmJmN2E1ZGFlYyIsInZlcnNpb24iOjF9.2_97LjZNzaqr1Y_5KS3drJXod88tnR8nxueoykW5HyAjOZWyHUxWnVYCehp69uStMqZZdEoIcmEbUO-G9UtsBQ
- type: recall
value: 0.9390681003584229
name: Recall
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmY0YTA5OTJmNDA1ZWMwODFjM2ZjYTQ2NDk3YTVjMWVlODk3MDAwNGQ5NTIxMDNmNWNiZjVjZjNkMjZkMjRhNCIsInZlcnNpb24iOjF9.lzgiHn52oU5rfHt5nn6MCLD96EQ7v617tnyBQrvyXRRhNTbRnEahIw-HlgGwttBEvIuY3sdC-PO1_27_B4NRBg
- type: auc
value: 0.8847906421049706
name: AUC
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODE0NmY0MzdjMWU4OTk3YzRjYzNmZDlmODY4ZTY2MTI3ODgyMGIwNTBkYTJlZjlmYmQwMWQ5YjZmYmRiNmVhMSIsInZlcnNpb24iOjF9.w9SJJidX_yNOl3OpJ06h8uwdD1AE-29wC6h3FkzAuOg9Je3zebrIpANRCeS7Dlx0XVAYgrPx0fHGpEmE6xycAQ
- type: f1
value: 0.8821548821548822
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjRhNGQxYjZiMTNlNWNlZmNlMzI3YzMzNTZjYTM4ZmRlMmMwN2U2ODhhYjlkOTA2M2U5YTlhNWYzMzM1OGRiYSIsInZlcnNpb24iOjF9.mhZ9x1uP2duocbA1J5QwZ8KmjanY1bsyhS4jWXdr3Kmx6crIzTEie_7NxnoMhVvZSah-bnm9u2ZwncKevz38Dg
- type: loss
value: 0.4118819236755371
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGQyNzc3ZmIwMDZiY2IwNmM1NjlhNTUwOWI1OTcwOWQ0ZWQxMGNjOWFkNDkzYWVjNDcyYmNkZGJjOWIxYzg2ZiIsInZlcnNpb24iOjF9.0MSbwf_Ac8NLHAHueYvlqMpoIvn6PV0okEkJZOQyxmX0x1f8jqoIgyPciKNHxvzKJn_lyKbWmWGhbhrsDcebDQ
natural-language-inference
This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.4120
- Accuracy: 0.8284
- F1: 0.8822
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 230 | 0.4288 | 0.8039 | 0.8644 |
No log | 2.0 | 460 | 0.4120 | 0.8284 | 0.8822 |
Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1