metadata
library_name: transformers
license: mit
base_model: avinasht/deberta-v3-small-Label_B-768-epochs-5
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: >-
Dblefinetune_Noisy-deberta-v3-small-Label_B-768-epochs-5-Label_B-768-epochs-1
results: []
Dblefinetune_Noisy-deberta-v3-small-Label_B-768-epochs-5-Label_B-768-epochs-1
This model is a fine-tuned version of avinasht/deberta-v3-small-Label_B-768-epochs-5 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1203
- Accuracy: 0.9815
- F1: 0.9815
- Precision: 0.9818
- Recall: 0.9815
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.016 | 0.9994 | 1279 | 0.1203 | 0.9815 | 0.9815 | 0.9818 | 0.9815 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 2.18.0
- Tokenizers 0.21.0