avinasht's picture
End of training
4777ec8 verified
metadata
library_name: transformers
license: mit
base_model: avinasht/deberta-v3-small-Label_B-768-epochs-5
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: >-
      Dblefinetune_Noisy-deberta-v3-small-Label_B-768-epochs-5-Label_B-768-epochs-1
    results: []

Dblefinetune_Noisy-deberta-v3-small-Label_B-768-epochs-5-Label_B-768-epochs-1

This model is a fine-tuned version of avinasht/deberta-v3-small-Label_B-768-epochs-5 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1203
  • Accuracy: 0.9815
  • F1: 0.9815
  • Precision: 0.9818
  • Recall: 0.9815

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 40
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.016 0.9994 1279 0.1203 0.9815 0.9815 0.9818 0.9815

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 2.18.0
  • Tokenizers 0.21.0