deberta-v3-base-Label_B-768-epochs-5

This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0609
  • Accuracy: 0.9876
  • F1: 0.9876
  • Precision: 0.9877
  • Recall: 0.9876

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.1209 0.9995 1066 0.3304 0.9204 0.9188 0.9333 0.9204
0.0639 2.0 2133 0.1217 0.9658 0.9658 0.9688 0.9658
0.0208 2.9995 3199 0.0540 0.9856 0.9856 0.9858 0.9856
0.002 4.0 4266 0.0609 0.9876 0.9876 0.9877 0.9876
0.0003 4.9977 5330 0.0786 0.9847 0.9847 0.9850 0.9847

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
177
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for avinasht/deberta-v3-base-Label_B-768-epochs-5

Finetuned
(297)
this model
Finetunes
1 model