image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3340
  • Accuracy: 0.575

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.5156 0.45
No log 2.0 80 1.4200 0.4562
No log 3.0 120 1.3790 0.5
No log 4.0 160 1.2859 0.525
No log 5.0 200 1.2592 0.5125
No log 6.0 240 1.3145 0.55
No log 7.0 280 1.3267 0.4813
No log 8.0 320 1.3288 0.5
No log 9.0 360 1.3073 0.5
No log 10.0 400 1.3066 0.5188
No log 11.0 440 1.2691 0.5563
No log 12.0 480 1.2809 0.5437
0.876 13.0 520 1.2963 0.5625
0.876 14.0 560 1.2965 0.5312
0.876 15.0 600 1.3542 0.5188
0.876 16.0 640 1.3489 0.5125
0.876 17.0 680 1.3146 0.5687
0.876 18.0 720 1.2442 0.575
0.876 19.0 760 1.3497 0.575
0.876 20.0 800 1.3316 0.5437

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
195
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for axelit64/image_classification

Finetuned
(1821)
this model

Evaluation results