wav2vec2-large-xls-r-300m-ia

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1452
  • Wer: 0.1253

Training Procedure

Training is conducted in Google Colab, the training notebook provided in the repo

Training and evaluation data

Language Model Created from texts from processed sentence in train + validation split of dataset (common voice 8.0 for Interlingua) Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_ia.ipynb"

Test WER without LM wer = 20.1776 % cer = 4.7205 %

Test WER using wer = 8.6074 % cer = 2.4147 %

evaluation using eval.py

huggingface-cli login #login to huggingface for getting auth token to access the common voice v8
#running with LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-ia --dataset mozilla-foundation/common_voice_8_0 --config ia --split test

# running without LM
python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-ia --dataset mozilla-foundation/common_voice_8_0 --config ia --split test --greedy

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.432 1.87 400 2.9636 1.0
2.6922 3.74 800 2.2111 0.9977
1.2581 5.61 1200 0.4864 0.4028
0.6232 7.48 1600 0.2807 0.2413
0.4479 9.35 2000 0.2219 0.1885
0.3654 11.21 2400 0.1886 0.1606
0.323 13.08 2800 0.1716 0.1444
0.2935 14.95 3200 0.1687 0.1443
0.2707 16.82 3600 0.1632 0.1382
0.2559 18.69 4000 0.1507 0.1337
0.2433 20.56 4400 0.1572 0.1358
0.2338 22.43 4800 0.1489 0.1305
0.2258 24.3 5200 0.1485 0.1278
0.2218 26.17 5600 0.1470 0.1272
0.2169 28.04 6000 0.1470 0.1270
0.2117 29.91 6400 0.1452 0.1253

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ayameRushia/wav2vec2-large-xls-r-300m-ia

Evaluation results