whisper-v3-turbo-id / README.md
ayameRushia's picture
End of training
1526266 verified
|
raw
history blame
2 kB
metadata
library_name: transformers
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-v3-turbo-id
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 9.140284096184198

whisper-v3-turbo-id

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1662
  • Wer: 9.1403

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2736 0.9615 500 0.2721 18.6659
0.1345 1.9231 1000 0.2059 13.0164
0.0401 2.8846 1500 0.1831 10.4726
0.0074 3.8462 2000 0.1662 9.1403

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1