|
---
|
|
language:
|
|
- en
|
|
license: apache-2.0
|
|
library_name: sentence-transformers
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- dataset_size:100K<n<1M
|
|
- loss:MultipleNegativesRankingLoss
|
|
base_model: microsoft/mpnet-base
|
|
metrics:
|
|
- cosine_accuracy
|
|
- dot_accuracy
|
|
- manhattan_accuracy
|
|
- euclidean_accuracy
|
|
- max_accuracy
|
|
widget:
|
|
- source_sentence: The truth?
|
|
sentences:
|
|
- Is that true?
|
|
- Some kids are napping.
|
|
- A dog is taking a nap.
|
|
- source_sentence: Just a bike
|
|
sentences:
|
|
- A child is riding a bike.
|
|
- A man is wearing white.
|
|
- A man is sleeping.
|
|
- source_sentence: girl sleeps
|
|
sentences:
|
|
- A girl sleeps
|
|
- That doesn't seem fair.
|
|
- A man is running a race
|
|
- source_sentence: Double pig.
|
|
sentences:
|
|
- The pig tripled.
|
|
- I hated talking to you.
|
|
- a woman is sleeping
|
|
- source_sentence: a dog sleeps
|
|
sentences:
|
|
- a dog sleep under a tree.
|
|
- Tommy didn't know, who.
|
|
- A man is on a canoe.
|
|
pipeline_tag: sentence-similarity
|
|
model-index:
|
|
- name: MPNet base trained on AllNLI triplets
|
|
results:
|
|
- task:
|
|
type: triplet
|
|
name: Triplet
|
|
dataset:
|
|
name: all nli dev
|
|
type: all-nli-dev
|
|
metrics:
|
|
- type: cosine_accuracy
|
|
value: 0.917831105710814
|
|
name: Cosine Accuracy
|
|
- type: dot_accuracy
|
|
value: 0.07867557715674361
|
|
name: Dot Accuracy
|
|
- type: manhattan_accuracy
|
|
value: 0.9138821385176185
|
|
name: Manhattan Accuracy
|
|
- type: euclidean_accuracy
|
|
value: 0.9147934386391251
|
|
name: Euclidean Accuracy
|
|
- type: max_accuracy
|
|
value: 0.917831105710814
|
|
name: Max Accuracy
|
|
- task:
|
|
type: triplet
|
|
name: Triplet
|
|
dataset:
|
|
name: all nli test
|
|
type: all-nli-test
|
|
metrics:
|
|
- type: cosine_accuracy
|
|
value: 0.9276743834165532
|
|
name: Cosine Accuracy
|
|
- type: dot_accuracy
|
|
value: 0.06733242548040551
|
|
name: Dot Accuracy
|
|
- type: manhattan_accuracy
|
|
value: 0.9255560599182933
|
|
name: Manhattan Accuracy
|
|
- type: euclidean_accuracy
|
|
value: 0.9234377364200332
|
|
name: Euclidean Accuracy
|
|
- type: max_accuracy
|
|
value: 0.9276743834165532
|
|
name: Max Accuracy
|
|
---
|
|
|
|
# MPNet base trained on AllNLI triplets
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 tokens
|
|
- **Similarity Function:** Cosine Similarity
|
|
- **Training Dataset:**
|
|
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
|
- **Language:** en
|
|
- **License:** apache-2.0
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("ayberkuckun/mpnet-base-all-nli-triplet")
|
|
# Run inference
|
|
sentences = [
|
|
'a dog sleeps',
|
|
'a dog sleep under a tree.',
|
|
"Tommy didn't know, who.",
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Triplet
|
|
* Dataset: `all-nli-dev`
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:-------------------|:-----------|
|
|
| cosine_accuracy | 0.9178 |
|
|
| dot_accuracy | 0.0787 |
|
|
| manhattan_accuracy | 0.9139 |
|
|
| euclidean_accuracy | 0.9148 |
|
|
| **max_accuracy** | **0.9178** |
|
|
|
|
#### Triplet
|
|
* Dataset: `all-nli-test`
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:-------------------|:-----------|
|
|
| cosine_accuracy | 0.9277 |
|
|
| dot_accuracy | 0.0673 |
|
|
| manhattan_accuracy | 0.9256 |
|
|
| euclidean_accuracy | 0.9234 |
|
|
| **max_accuracy** | **0.9277** |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### sentence-transformers/all-nli
|
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
|
* Size: 100,000 training samples
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | anchor | positive | negative |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
|
| type | string | string | string |
|
|
| details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
|
|
* Samples:
|
|
| anchor | positive | negative |
|
|
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
|
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
|
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
|
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
|
```json
|
|
{
|
|
"scale": 20.0,
|
|
"similarity_fct": "cos_sim"
|
|
}
|
|
```
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### sentence-transformers/all-nli
|
|
|
|
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
|
* Size: 6,584 evaluation samples
|
|
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | anchor | positive | negative |
|
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
| type | string | string | string |
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
|
|
* Samples:
|
|
| anchor | positive | negative |
|
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
|
|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
|
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
|
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
|
```json
|
|
{
|
|
"scale": 20.0,
|
|
"similarity_fct": "cos_sim"
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `learning_rate`: 2e-05
|
|
- `num_train_epochs`: 1
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
- `batch_sampler`: no_duplicates
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `learning_rate`: 2e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 1
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `batch_sampler`: no_duplicates
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|
|
|:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
|
|
| 0 | 0 | - | - | 0.6832 | - |
|
|
| 0.016 | 100 | 3.1461 | 1.6989 | 0.7708 | - |
|
|
| 0.032 | 200 | 1.3308 | 0.9213 | 0.8010 | - |
|
|
| 0.048 | 300 | 1.4333 | 0.8036 | 0.8117 | - |
|
|
| 0.064 | 400 | 0.8862 | 0.7591 | 0.8132 | - |
|
|
| 0.08 | 500 | 0.8292 | 0.8372 | 0.8045 | - |
|
|
| 0.096 | 600 | 1.0852 | 0.8512 | 0.8018 | - |
|
|
| 0.112 | 700 | 0.9157 | 0.8736 | 0.8118 | - |
|
|
| 0.128 | 800 | 1.0996 | 0.9799 | 0.7924 | - |
|
|
| 0.144 | 900 | 1.1212 | 0.9036 | 0.8171 | - |
|
|
| 0.16 | 1000 | 1.0296 | 0.8890 | 0.7922 | - |
|
|
| 0.176 | 1100 | 1.1005 | 1.0113 | 0.7922 | - |
|
|
| 0.192 | 1200 | 1.03 | 0.8993 | 0.8068 | - |
|
|
| 0.208 | 1300 | 0.824 | 0.8918 | 0.7966 | - |
|
|
| 0.224 | 1400 | 0.7829 | 0.8369 | 0.8070 | - |
|
|
| 0.24 | 1500 | 0.8878 | 0.7897 | 0.8098 | - |
|
|
| 0.256 | 1600 | 0.7346 | 0.8386 | 0.8127 | - |
|
|
| 0.272 | 1700 | 0.892 | 0.9013 | 0.8092 | - |
|
|
| 0.288 | 1800 | 0.8553 | 0.8347 | 0.8130 | - |
|
|
| 0.304 | 1900 | 0.8208 | 0.8359 | 0.8150 | - |
|
|
| 0.32 | 2000 | 0.737 | 0.7469 | 0.8636 | - |
|
|
| 0.336 | 2100 | 0.6301 | 0.7850 | 0.8442 | - |
|
|
| 0.352 | 2200 | 0.662 | 0.6924 | 0.8648 | - |
|
|
| 0.368 | 2300 | 0.8195 | 0.7686 | 0.8509 | - |
|
|
| 0.384 | 2400 | 0.7525 | 0.7049 | 0.8603 | - |
|
|
| 0.4 | 2500 | 0.6834 | 0.7109 | 0.8618 | - |
|
|
| 0.416 | 2600 | 0.5977 | 0.6715 | 0.8589 | - |
|
|
| 0.432 | 2700 | 0.8432 | 0.7482 | 0.8597 | - |
|
|
| 0.448 | 2800 | 0.8676 | 0.6765 | 0.8575 | - |
|
|
| 0.464 | 2900 | 0.8342 | 0.6336 | 0.8773 | - |
|
|
| 0.48 | 3000 | 0.7155 | 0.6320 | 0.8789 | - |
|
|
| 0.496 | 3100 | 0.762 | 0.6094 | 0.8697 | - |
|
|
| 0.512 | 3200 | 0.5909 | 0.5915 | 0.8748 | - |
|
|
| 0.528 | 3300 | 0.5679 | 0.5382 | 0.8881 | - |
|
|
| 0.544 | 3400 | 0.5163 | 0.5617 | 0.8891 | - |
|
|
| 0.56 | 3500 | 0.5164 | 0.5627 | 0.8960 | - |
|
|
| 0.576 | 3600 | 0.519 | 0.5236 | 0.8917 | - |
|
|
| 0.592 | 3700 | 0.5327 | 0.5305 | 0.8998 | - |
|
|
| 0.608 | 3800 | 0.4958 | 0.5071 | 0.8990 | - |
|
|
| 0.624 | 3900 | 0.503 | 0.5242 | 0.8919 | - |
|
|
| 0.64 | 4000 | 0.7307 | 0.5176 | 0.9033 | - |
|
|
| 0.656 | 4100 | 0.9127 | 0.5168 | 0.9039 | - |
|
|
| 0.672 | 4200 | 0.8677 | 0.4683 | 0.9102 | - |
|
|
| 0.688 | 4300 | 0.6641 | 0.4549 | 0.9083 | - |
|
|
| 0.704 | 4400 | 0.586 | 0.4447 | 0.9092 | - |
|
|
| 0.72 | 4500 | 0.5447 | 0.4516 | 0.9084 | - |
|
|
| 0.736 | 4600 | 0.5895 | 0.4432 | 0.9104 | - |
|
|
| 0.752 | 4700 | 0.643 | 0.4479 | 0.9089 | - |
|
|
| 0.768 | 4800 | 0.6011 | 0.4310 | 0.9110 | - |
|
|
| 0.784 | 4900 | 0.5494 | 0.4417 | 0.9048 | - |
|
|
| 0.8 | 5000 | 0.6382 | 0.4628 | 0.9102 | - |
|
|
| 0.816 | 5100 | 0.5265 | 0.4355 | 0.9137 | - |
|
|
| 0.832 | 5200 | 0.5791 | 0.4165 | 0.9111 | - |
|
|
| 0.848 | 5300 | 0.5133 | 0.4276 | 0.9137 | - |
|
|
| 0.864 | 5400 | 0.634 | 0.4434 | 0.9083 | - |
|
|
| 0.88 | 5500 | 0.5405 | 0.4266 | 0.9086 | - |
|
|
| 0.896 | 5600 | 0.5374 | 0.4239 | 0.9102 | - |
|
|
| 0.912 | 5700 | 0.5969 | 0.4134 | 0.9137 | - |
|
|
| 0.928 | 5800 | 0.5549 | 0.4029 | 0.9159 | - |
|
|
| 0.944 | 5900 | 0.6575 | 0.4032 | 0.9165 | - |
|
|
| 0.96 | 6000 | 0.756 | 0.4116 | 0.9172 | - |
|
|
| 0.976 | 6100 | 0.6343 | 0.4069 | 0.9177 | - |
|
|
| 0.992 | 6200 | 0.0003 | 0.4065 | 0.9178 | - |
|
|
| 1.0 | 6250 | - | - | - | 0.9277 |
|
|
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.7
|
|
- Sentence Transformers: 3.0.0
|
|
- Transformers: 4.41.2
|
|
- PyTorch: 2.1.2+cu121
|
|
- Accelerate: 0.30.1
|
|
- Datasets: 2.19.2
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### MultipleNegativesRankingLoss
|
|
```bibtex
|
|
@misc{henderson2017efficient,
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
|
year={2017},
|
|
eprint={1705.00652},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |