|
--- |
|
license: apache-2.0 |
|
base_model: facebook/hubert-base-ls960 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: hubert-base-ls960-finetuned-common_voice |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hubert-base-ls960-finetuned-common_voice |
|
|
|
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4616 |
|
- Accuracy: 0.9375 |
|
- F1: 0.9377 |
|
- Recall: 0.9375 |
|
- Precision: 0.9403 |
|
- Mcc: 0.9225 |
|
- Auc: 0.9925 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | Mcc | Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|:------:|:------:| |
|
| 1.601 | 0.96 | 12 | 1.5594 | 0.385 | 0.3217 | 0.3850 | 0.6064 | 0.2666 | 0.7895 | |
|
| 1.5467 | 2.0 | 25 | 1.3344 | 0.67 | 0.6516 | 0.6700 | 0.7185 | 0.6030 | 0.9009 | |
|
| 1.4062 | 2.96 | 37 | 1.0521 | 0.8 | 0.7964 | 0.8 | 0.8014 | 0.7521 | 0.9436 | |
|
| 1.0881 | 4.0 | 50 | 0.8340 | 0.8525 | 0.8502 | 0.8525 | 0.8677 | 0.8201 | 0.9759 | |
|
| 0.9348 | 4.96 | 62 | 0.7227 | 0.89 | 0.8894 | 0.89 | 0.8939 | 0.8639 | 0.9801 | |
|
| 0.8596 | 6.0 | 75 | 0.5873 | 0.9275 | 0.9276 | 0.9275 | 0.9300 | 0.9100 | 0.9908 | |
|
| 0.7917 | 6.96 | 87 | 0.5208 | 0.93 | 0.9298 | 0.93 | 0.9310 | 0.9128 | 0.9940 | |
|
| 0.6721 | 8.0 | 100 | 0.4784 | 0.9475 | 0.9476 | 0.9475 | 0.9491 | 0.9348 | 0.9935 | |
|
| 0.6297 | 8.96 | 112 | 0.4734 | 0.9325 | 0.9326 | 0.9325 | 0.9363 | 0.9166 | 0.9916 | |
|
| 0.6127 | 9.6 | 120 | 0.4616 | 0.9375 | 0.9377 | 0.9375 | 0.9403 | 0.9225 | 0.9925 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|