aydink's picture
Model save
6bfbf6d verified
|
raw
history blame
2.74 kB
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: hubert-base-ls960-finetuned-common_voice
    results: []

hubert-base-ls960-finetuned-common_voice

This model is a fine-tuned version of facebook/hubert-base-ls960 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2002
  • Accuracy: 0.955
  • F1: 0.9549
  • Recall: 0.9550
  • Precision: 0.9551
  • Mcc: 0.9438
  • Auc: 0.9942

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision Mcc Auc
1.5544 1.0 200 1.5193 0.405 0.3628 0.4050 0.5940 0.2904 0.8407
1.1406 2.0 400 0.9811 0.6375 0.5780 0.6375 0.6712 0.5734 0.9464
0.7902 3.0 600 0.6775 0.8125 0.7969 0.8125 0.8181 0.7740 0.9724
0.5346 4.0 800 0.5083 0.8725 0.8683 0.8725 0.8774 0.8438 0.9834
0.5139 5.0 1000 0.3943 0.9025 0.8988 0.9025 0.9074 0.8809 0.9879
0.5136 6.0 1200 0.3314 0.915 0.9145 0.915 0.9174 0.8945 0.9881
0.3726 7.0 1400 0.2894 0.925 0.9241 0.925 0.9258 0.9069 0.9878
0.3072 8.0 1600 0.2267 0.9325 0.9314 0.9325 0.9349 0.9167 0.9914
0.1948 9.0 1800 0.2117 0.945 0.9445 0.945 0.9461 0.9317 0.9931
0.2312 10.0 2000 0.2002 0.955 0.9549 0.9550 0.9551 0.9438 0.9942

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1