|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers import GPT2LMHeadModel, GPT2TokenizerFast |
|
from timm import create_model |
|
from types import SimpleNamespace |
|
|
|
|
|
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2') |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
class GPT2Attention(nn.Module): |
|
def __init__(self,config:SimpleNamespace): |
|
super(GPT2Attention,self).__init__() |
|
self.embed_dim = config.embed_dim |
|
self.n_heads = config.num_heads |
|
assert self.embed_dim % self.n_heads == 0, "embedding dim must be divisible by num heads" |
|
self.head_size = self.embed_dim // self.n_heads |
|
self.seq_len = config.seq_len |
|
self.c_attn = nn.Linear(self.embed_dim,self.embed_dim*3) |
|
self.scale = self.head_size ** -0.5 |
|
|
|
self.register_buffer('mask',torch.tril(torch.ones(1,1,self.seq_len,self.seq_len))) |
|
self.c_proj = nn.Linear(self.embed_dim,self.embed_dim) |
|
self.attn_dropout = nn.Dropout(config.attention_dropout) |
|
self.resid_dropout = nn.Dropout(config.residual_dropout) |
|
|
|
def forward(self,x:torch.Tensor)-> torch.Tensor: |
|
b,t,c = x.shape |
|
|
|
q,k,v = self.c_attn(x).chunk(3,dim=-1) |
|
q = q.view(b,t,self.n_heads,self.head_size).permute(0,2,1,3) |
|
k = k.view(b,t,self.n_heads,self.head_size).permute(0,2,1,3) |
|
v = v.view(b,t,self.n_heads,self.head_size).permute(0,2,1,3) |
|
|
|
qk_t = ([email protected](-2,-1))*self.scale |
|
qk_t = qk_t.masked_fill(self.mask[:,:,:t,:t]==0,float('-inf')) |
|
qk_t = F.softmax(qk_t,dim=-1) |
|
weights = self.attn_dropout(qk_t) |
|
|
|
attention = weights@v |
|
attention = attention.permute(0,2,1,3).contiguous().view(b,t,c) |
|
|
|
out = self.c_proj(attention) |
|
return self.resid_dropout(out) |
|
|
|
class GPT2CrossAttention(nn.Module): |
|
def __init__(self,config:SimpleNamespace): |
|
super(GPT2CrossAttention,self).__init__() |
|
self.embed_dim = config.embed_dim |
|
self.n_heads = config.num_heads |
|
assert self.embed_dim %self.n_heads == 0, "embedding dim must be divisible by num heads" |
|
self.head_size = self.embed_dim // self.n_heads |
|
self.seq_len = config.seq_len |
|
|
|
self.q = nn.Linear(self.embed_dim,self.embed_dim) |
|
self.k = nn.Linear(self.embed_dim,self.embed_dim) |
|
self.v = nn.Linear(self.embed_dim,self.embed_dim) |
|
self.scale = self.head_size ** -0.5 |
|
|
|
self.c_proj = nn.Linear(self.embed_dim,self.embed_dim) |
|
self.attn_dropout = nn.Dropout(config.attention_dropout) |
|
self.resid_dropout = nn.Dropout(config.residual_dropout) |
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self,module): |
|
if isinstance(module,nn.Linear): |
|
nn.init.normal_(module.weight,mean=0.0,std=0.02) |
|
|
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
|
|
def forward(self,q:torch.Tensor,k:torch.Tensor,v:torch.Tensor)->torch.Tensor: |
|
b,t,c = q.shape |
|
|
|
q,k,v = self.q(q),self.k(k),self.v(v) |
|
|
|
q = q.view(b,q.size(1),self.n_heads,self.head_size).permute(0,2,1,3) |
|
k = k.view(b,k.size(1),self.n_heads,self.head_size).permute(0,2,1,3) |
|
v = v.view(b,v.size(1),self.n_heads,self.head_size).permute(0,2,1,3) |
|
|
|
qk_t = ([email protected](-2,-1))*self.scale |
|
qk_t = F.softmax(qk_t,dim=-1) |
|
weights = self.attn_dropout(qk_t) |
|
|
|
attention = weights@v |
|
attention = attention.permute(0,2,1,3).contiguous().view(b,t,c) |
|
|
|
out = self.c_proj(attention) |
|
return self.resid_dropout(out) |
|
|
|
class GPT2MLP(nn.Module): |
|
def __init__(self,config:SimpleNamespace): |
|
super().__init__() |
|
self.embed_dim = config.embed_dim |
|
self.mlp_ratio = config.mlp_ratio |
|
self.mlp_dropout = config.mlp_dropout |
|
self.c_fc = nn.Linear(self.embed_dim,self.embed_dim*self.mlp_ratio) |
|
self.c_proj = nn.Linear(self.embed_dim*self.mlp_ratio,self.embed_dim) |
|
self.act = nn.GELU() |
|
self.dropout = nn.Dropout(self.mlp_dropout) |
|
|
|
def forward(self,x:torch.Tensor)->torch.Tensor: |
|
x = self.c_fc(x) |
|
x = self.act(x) |
|
x = self.c_proj(x) |
|
return self.dropout(x) |
|
|
|
class GPT2Block(nn.Module): |
|
def __init__(self,config:SimpleNamespace): |
|
super(GPT2Block,self).__init__() |
|
self.embed_dim = config.embed_dim |
|
self.ln_1 = nn.LayerNorm(self.embed_dim) |
|
self.attn = GPT2Attention(config) |
|
self.ln_2 = nn.LayerNorm(self.embed_dim) |
|
self.mlp = GPT2MLP(config) |
|
self.ln_3 = nn.LayerNorm(self.embed_dim) |
|
self.cross_attn = GPT2CrossAttention(config) |
|
|
|
def forward(self,x:torch.Tensor,enc_out:torch.Tensor)->torch.Tensor: |
|
x = x+self.attn(self.ln_1(x)) |
|
x = x+self.cross_attn(self.ln_2(x),enc_out,enc_out) |
|
x = x+self.mlp(self.ln_3(x)) |
|
return x |
|
|
|
class VisionGPT2Model(nn.Module): |
|
def __init__(self,config:SimpleNamespace): |
|
super(VisionGPT2Model,self).__init__() |
|
self.config = config |
|
vit = create_model('vit_base_patch16_224',pretrained=True,num_classes=0) |
|
self.patch_embed = vit.patch_embed |
|
num_patches = self.patch_embed.num_patches |
|
self.cls_token = vit.cls_token |
|
embed_len = num_patches + vit.num_prefix_tokens |
|
self.pos_embed = vit.pos_embed |
|
self.blocks = nn.ModuleList([vit.blocks[i] for i in range(config.depth)]) |
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size,config.embed_dim), |
|
wpe = nn.Embedding(config.seq_len,config.embed_dim), |
|
drop = nn.Dropout(config.emb_dropout), |
|
h = nn.ModuleList([GPT2Block(config) for _ in range(config.depth)]), |
|
ln_f = nn.LayerNorm(config.embed_dim), |
|
)) |
|
self.lm_head = nn.Linear(config.embed_dim,config.vocab_size,bias= False) |
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
def _pos_embed(self,x:torch.Tensor)->torch.Tensor: |
|
pos_embed = self.pos_embed |
|
x = torch.cat((self.cls_token.expand(x.shape[0],-1,-1),x),dim =1) |
|
x = x+pos_embed |
|
return x |
|
|
|
def pretrained_layers_trainable(self,t:bool = False)->None: |
|
layers =[ |
|
self.cls_token,self.patch_embed,self.pos_embed,self.blocks, |
|
self.transformer.wte,self.transformer.wpe, |
|
self.transformer.ln_f,self.lm_head |
|
] |
|
gpt_layers = [[ |
|
self.transformer.h[i].ln_1,self.transformer.h[i].ln_2, |
|
self.transformer.h[i].attn,self.transformer.h[i].mlp |
|
]for i in range(self.config.depth)] |
|
|
|
for l in gpt_layers: |
|
layers.extend(l) |
|
|
|
for layer in layers: |
|
if not isinstance(layer,nn.Parameter): |
|
for p in layer.parameters(): |
|
p.requires_grad = t |
|
else: |
|
layer.requires_grad = t |
|
|
|
total_frozen_params = sum([p.numel() for p in self.parameters() if not p.requires_grad]) |
|
print(f"{total_frozen_params =}") |
|
|
|
def unfreeze_gpt_layers(self)->None: |
|
gpt_layers = [[ |
|
self.transformer.h[i].ln_1,self.transformer.h[i].ln_2, |
|
self.transformer.h[i].attn,self.transformer.h[i].mlp |
|
]for i in range(self.config.depth)] |
|
|
|
flatten = [] |
|
|
|
for l in gpt_layers: |
|
flatten.extend(l) |
|
|
|
for layer in flatten: |
|
if not isinstance(layer,nn.Parameter): |
|
for p in layer.parameters(): |
|
p.requires_grad = True |
|
else: |
|
layer.requires_grad = True |
|
|
|
@classmethod |
|
def from_pretrained(self,config:SimpleNamespace): |
|
model = VisionGPT2Model(config) |
|
sd = model.state_dict() |
|
keys = sd.keys() |
|
ignore_matches = ['blocks.','cross_attn.','ln_3','cls_token', |
|
'pos_embed','patch_embed.','.attn.mask'] |
|
vit_keys = [key for key in keys if any(match in key for match in ignore_matches)] |
|
gpt_keys = [key for key in keys if key not in vit_keys] |
|
gpt2_small = GPT2LMHeadModel.from_pretrained('gpt2') |
|
sd_hf = gpt2_small.state_dict() |
|
hf_keys = sd_hf.keys() |
|
hf_keys = [k for k in hf_keys if not k.endswith('.attn.masked_bias')] |
|
hf_keys = [k for k in hf_keys if not k.endswith('.attn.bias')] |
|
transposed = ['attn.c_attn.weight','attn.c_proj.weight', |
|
'mlp.c_fc.weight','mlp.c_proj.weight'] |
|
|
|
for k in hf_keys: |
|
if any(match in k for match in ignore_matches): |
|
continue |
|
if any(k.endswith(w) for w in transposed): |
|
assert sd_hf[k].shape[::-1] == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k].t()) |
|
else: |
|
assert sd_hf[k].shape == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k]) |
|
|
|
model.load_state_dict(sd) |
|
return model |
|
|
|
def forward(self,image:torch.Tensor,input_ids:torch.Tensor,labels:None|torch.Tensor=None)->torch.Tensor: |
|
image = self.patch_embed(image) |
|
image = self._pos_embed(image) |
|
token_embeddings = self.transformer.wte(input_ids) |
|
pos_embs = torch.arange(0,input_ids.size(1)).to(input_ids.device) |
|
positional_embeddings = self.transformer.wpe(pos_embs) |
|
input_ids = self.transformer.drop(token_embeddings+positional_embeddings) |
|
|
|
for i in range(self.config.depth): |
|
image = self.blocks[i](image) |
|
input_ids = self.transformer.h[i](input_ids,image) |
|
input_ids = self.transformer.ln_f(input_ids) |
|
|
|
if labels is not None: |
|
lm_logits = self.lm_head(input_ids) |
|
loss = F.cross_entropy(lm_logits.view(-1,lm_logits.shape[-1]),labels.view(-1)) |
|
return loss |
|
lm_logits = self.lm_head(input_ids[:,[-1],:]) |
|
return lm_logits |
|
|
|
def generate(self,image:torch.Tensor, |
|
sequence:torch.Tensor, |
|
max_tokens:int =50, |
|
temp:float =1.0, |
|
deter:bool =False) -> torch.Tensor: |
|
|
|
for _ in range(max_tokens): |
|
out = self(image,sequence) |
|
out = out[:,-1,:]/temp |
|
probs = F.softmax(out,dim=-1) |
|
if deter: |
|
next_token = torch.argmax(probs,dim=-1,keepdim=True) |
|
else: |
|
next_token = torch.multinomial(probs,num_samples=1) |
|
|
|
sequence = torch.cat([sequence,next_token],dim=1) |
|
if next_token.item() == tokenizer.eos_token_id: |
|
break |
|
return sequence.cpu().flatten() |