bandi2716's picture
Upload folder using huggingface_hub
8cb43cf verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10501
  - loss:CosineSimilarityLoss
base_model: klue/roberta-base
widget:
  - source_sentence: 위치도 구성도 굉장히 만족스러운 숙소였습니다.
    sentences:
      - 숙박시설의 위치와 구성은 매우 만족스러웠습니다.
      - 주인은 친절하고 유익합니다.
      - 화장실과 현관  너가 켜길 원하는 조명은 어느 곳이야?
  - source_sentence: 빔프로젝터 사용하지마.
    sentences:
      - 라니냐가 일어날  해수면은  도나 내려가는지 찾아줘.
      - 혹시 집안 조명 어떻게 밝기 조정하는  아니?
      - 밖에 나갈때 집안모드말고 방범모드 켜놓는  잊으면 안돼
  - source_sentence: 숙소는 사진 그대로인데 생각보다 훨씬 커요.
    sentences:
      - 회사에서 보낸 메일은 지금 로그인된 지메일 계정보다는 다른 지메일로 보내주는게 좋아.
      - 숙소 실제모습은 사진보다 훨씬 좋았습니다.
      - 하지만,  숙소의 위치는 추위와 시끄러운 소리를 모두 수용할  있을 만큼 좋았습니다.
  - source_sentence: 어떤 방법으로 환풍기를 작동시켜야 돼?
    sentences:
      - 밤에 말고 낮에는 조명등   밝게 해보는게 어때?
      - >-
        현재 이라크는 한국 외에도 입국 전 14일 이내에 중국, 이탈리아, 이란, 일본, 태국, 싱가포르, 쿠웨이트, 바레인 등 총 9개
        국가 방문자 입국 금지를 시행 중이다.
      - 에어컨 켜는  별로  좋은 생각인데.
  - source_sentence: 후라이팬도 더럽고 수압도 너무 약합니다.
    sentences:
      - 숙소 엄청 깨끗하고 집도 너무 예뻐요.
      -  방의 풍경은 말로 표현할  없습니다.
      - 반면, 도서관, 영화관은 각각 -11%, -17%로 언급량이 감소했다.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
model-index:
  - name: SentenceTransformer based on klue/roberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: pearson_cosine
            value: 0.34770703293721916
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.35560473197486514
            name: Spearman Cosine
          - type: pearson_cosine
            value: 0.9621254203651556
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.9227170063087085
            name: Spearman Cosine

SentenceTransformer based on klue/roberta-base

This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: klue/roberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '후라이팬도 더럽고 수압도 너무 약합니다.',
    '숙소 엄청 깨끗하고 집도 너무 예뻐요.',
    '그 방의 풍경은 말로 표현할 수 없습니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.3477
spearman_cosine 0.3556

Semantic Similarity

Metric Value
pearson_cosine 0.9621
spearman_cosine 0.9227

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,501 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 7 tokens
    • mean: 19.66 tokens
    • max: 70 tokens
    • min: 6 tokens
    • mean: 19.42 tokens
    • max: 65 tokens
    • min: 0.0
    • mean: 0.44
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    만약, 비누와 물이 없으면 알콜이 포함된 손 소독제를 사용하세요. 보호의·감염병 예방 물품키트 등 방역 물품을 확충하고, 어린이집·경로당 등 시설에 마스크와 손 소독제 등 용품도 지원한다. 0.13999999999999999
    약속 시간에 맞춰서 오는 대신에 오분 전에 도착하도록 하자. 앞으로는 늦지 말고 약속 오분 전에 도착해라. 0.6599999999999999
    ‘대한민국의 위대한 2020년’으로 역사에 기록될 수 있도록 남은 한 달, 유종의 미를 거두기를 바랍니다. 이해관계 대립으로 미뤄졌던 대규모 국책사업도 신속한 추진으로 위기 국면에서 경제 활력 제고와 일자리 창출에 기여할 수 있기를 바랍니다. 0.04
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 4
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss spearman_cosine
0 0 - 0.3556
0.7610 500 0.028 -
1.0 657 - 0.9152
1.5221 1000 0.0079 0.9157
2.0 1314 - 0.9189
2.2831 1500 0.005 -
3.0 1971 - 0.9222
3.0441 2000 0.0035 0.9216
3.8052 2500 0.0026 -
4.0 2628 - 0.9227

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}