metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10501
- loss:CosineSimilarityLoss
base_model: klue/roberta-base
widget:
- source_sentence: 위치도 구성도 굉장히 만족스러운 숙소였습니다.
sentences:
- 숙박시설의 위치와 구성은 매우 만족스러웠습니다.
- 주인은 친절하고 유익합니다.
- 화장실과 현관 중 너가 켜길 원하는 조명은 어느 곳이야?
- source_sentence: 빔프로젝터 사용하지마.
sentences:
- 라니냐가 일어날 때 해수면은 몇 도나 내려가는지 찾아줘.
- 혹시 집안 조명 어떻게 밝기 조정하는 지 아니?
- 밖에 나갈때 집안모드말고 방범모드 켜놓는 거 잊으면 안돼
- source_sentence: 숙소는 사진 그대로인데 생각보다 훨씬 커요.
sentences:
- 회사에서 보낸 메일은 지금 로그인된 지메일 계정보다는 다른 지메일로 보내주는게 좋아.
- 숙소 실제모습은 사진보다 훨씬 좋았습니다.
- 하지만, 그 숙소의 위치는 추위와 시끄러운 소리를 모두 수용할 수 있을 만큼 좋았습니다.
- source_sentence: 어떤 방법으로 환풍기를 작동시켜야 돼?
sentences:
- 밤에 말고 낮에는 조명등 좀 덜 밝게 해보는게 어때?
- >-
현재 이라크는 한국 외에도 입국 전 14일 이내에 중국, 이탈리아, 이란, 일본, 태국, 싱가포르, 쿠웨이트, 바레인 등 총 9개
국가 방문자 입국 금지를 시행 중이다.
- 에어컨 켜는 건 별로 안 좋은 생각인데.
- source_sentence: 후라이팬도 더럽고 수압도 너무 약합니다.
sentences:
- 숙소 엄청 깨끗하고 집도 너무 예뻐요.
- 그 방의 풍경은 말로 표현할 수 없습니다.
- 반면, 도서관, 영화관은 각각 -11%, -17%로 언급량이 감소했다.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on klue/roberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.34770703293721916
name: Pearson Cosine
- type: spearman_cosine
value: 0.35560473197486514
name: Spearman Cosine
- type: pearson_cosine
value: 0.9621254203651556
name: Pearson Cosine
- type: spearman_cosine
value: 0.9227170063087085
name: Spearman Cosine
SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'후라이팬도 더럽고 수압도 너무 약합니다.',
'숙소 엄청 깨끗하고 집도 너무 예뻐요.',
'그 방의 풍경은 말로 표현할 수 없습니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.3477 |
spearman_cosine | 0.3556 |
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9621 |
spearman_cosine | 0.9227 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,501 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 19.66 tokens
- max: 70 tokens
- min: 6 tokens
- mean: 19.42 tokens
- max: 65 tokens
- min: 0.0
- mean: 0.44
- max: 1.0
- Samples:
sentence_0 sentence_1 label 만약, 비누와 물이 없으면 알콜이 포함된 손 소독제를 사용하세요.
보호의·감염병 예방 물품키트 등 방역 물품을 확충하고, 어린이집·경로당 등 시설에 마스크와 손 소독제 등 용품도 지원한다.
0.13999999999999999
약속 시간에 맞춰서 오는 대신에 오분 전에 도착하도록 하자.
앞으로는 늦지 말고 약속 오분 전에 도착해라.
0.6599999999999999
‘대한민국의 위대한 2020년’으로 역사에 기록될 수 있도록 남은 한 달, 유종의 미를 거두기를 바랍니다.
이해관계 대립으로 미뤄졌던 대규모 국책사업도 신속한 추진으로 위기 국면에서 경제 활력 제고와 일자리 창출에 기여할 수 있기를 바랍니다.
0.04
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | spearman_cosine |
---|---|---|---|
0 | 0 | - | 0.3556 |
0.7610 | 500 | 0.028 | - |
1.0 | 657 | - | 0.9152 |
1.5221 | 1000 | 0.0079 | 0.9157 |
2.0 | 1314 | - | 0.9189 |
2.2831 | 1500 | 0.005 | - |
3.0 | 1971 | - | 0.9222 |
3.0441 | 2000 | 0.0035 | 0.9216 |
3.8052 | 2500 | 0.0026 | - |
4.0 | 2628 | - | 0.9227 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}