File size: 4,582 Bytes
4274fc9
 
 
56d2cf2
 
 
 
 
 
 
 
 
 
4274fc9
 
 
 
56d2cf2
4274fc9
 
 
56d2cf2
4274fc9
56d2cf2
 
 
 
 
 
4274fc9
56d2cf2
4274fc9
56d2cf2
 
4274fc9
 
 
 
56d2cf2
4274fc9
 
56d2cf2
4274fc9
 
 
56d2cf2
 
4274fc9
56d2cf2
4274fc9
 
56d2cf2
 
4274fc9
56d2cf2
4274fc9
 
 
56d2cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4274fc9
 
 
 
 
 
56d2cf2
4274fc9
 
 
 
 
 
56d2cf2
 
4274fc9
 
56d2cf2
 
 
 
 
4274fc9
56d2cf2
4274fc9
 
 
 
 
 
 
56d2cf2
4274fc9
 
56d2cf2
4274fc9
56d2cf2
 
 
4274fc9
56d2cf2
4274fc9
 
56d2cf2
4274fc9
56d2cf2
4274fc9
56d2cf2
 
4274fc9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
---
base_model: meta-llama/Meta-Llama-3.1-8B
library_name: peft
datasets:
- barbaroo/Sprotin_parallel
language:
- en
- fo
metrics:
- bleu
- chrf
- bertscore
pipeline_tag: text-generation
---



# Model Card: English–Faroese Translation Adapter

## Model Details

**Model Description**

- **Developed by:** Barbara Scalvini
- **Model type:** Language model adapter for **English → Faroese** translation  
- **Language(s):** English, Faroese  
- **License:** This adapter inherits the license from the original Llama 3.1 8B model.
- **Finetuned from model:** [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B)  
- **Library used:** [PEFT 0.13.0](https://github.com/huggingface/peft)

### Model Sources 

- **Paper:** [COMING SOON]  
---

## Uses

### Direct Use
This adapter is intended to perform **English→Faroese** translation, leveraging a **parameter-efficient fine-tuning** (PEFT) approach.

### Downstream Use [optional]
- Can be integrated into broader **multilingual** or **localization** workflows.


### Out-of-Scope Use
- Any uses that rely on languages other than **English or Faroese** will likely yield suboptimal results.
- Other tasks (e.g., summarization, classification) may be unsupported or require further fine-tuning.

---

## Bias, Risks, and Limitations
- **Biases:** The model could reflect **biases** present in the training data, such as historical or societal biases in English or Faroese texts.
- **Recommendation:** Users should **critically evaluate** outputs, especially in sensitive or high-stakes applications.

---

## How to Get Started with the Model

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load the trained model and tokenizer from the checkpoint
checkpoint_dir = "barbaroo/llama3.1_translate_8B"  # The directory where your trained model and tokenizer are saved
model = AutoModelForCausalLM.from_pretrained(checkpoint_dir, device_map="auto", load_in_8bit = True)
tokenizer = AutoTokenizer.from_pretrained(checkpoint_dir)
MAX_SEQ_LENGTH = 512
sentences = ["What's your name?"]

# Define the prompt template (same as in training)
alpaca_prompt = """
### Instruction:
{}

### Input:
{}

### Response:
{}"""

# Inference loop
for sentence in sentences:
    inputs = tokenizer(
        [
            alpaca_prompt.format(
                "Translate this sentence from English to Faroese:",  # Instruction
                sentence,  # The input sentence to translate
                "",  # Leave blank for generation
            )
        ],
        return_tensors="pt",
        padding=True,
        truncation=True,  # Make sure the input is not too long
        max_length=MAX_SEQ_LENGTH  # Enforce the max length if necessary
    ).to("cuda")

    # Generate the translation
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,  # Limit the number of new tokens generated
        eos_token_id=tokenizer.eos_token_id,  # Ensure EOS token is used
        pad_token_id=tokenizer.pad_token_id,  # Ensure padding token is used
        temperature=0.1,  # Sampling temperature for diversity
        top_p=1.0,  # Sampling top-p for generation
        use_cache=True  # Use cache for efficiency
    )

    # Decode the generated tokens into text
    output_string = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    print(f"Input: {sentence}")
    print(f"Generated Translation: {output_string}")
```


## Training Details

### Training Data

We used the Sprotin parallel corpus for **English–Faroese** translation: [barbaroo/Sprotin_parallel](https://huggingface.co/datasets/barbaroo/Sprotin_parallel). 


### Training Procedure

#### Preprocessing [optional]

- **Tokenization**: We used the tokenizer from the base model `meta-llama/Llama-3.1-8B`.
- The Alpaca prompt format was used, with Instruction, Input and Response. 

#### Training Hyperparameters
 
- **Epochs**: **3** total, with an **early stopping** criterion monitoring validation loss.  
- **Batch Size**: **2, with 4 Gradient accumulation steps**  
- **Learning Rate**: **2e-4** 
- **Optimizer**: **AdamW** with a linear learning-rate scheduler and warm-up.

---

## Evaluation

### Testing Data, Factors & Metrics

#### Testing Data

- The model was evaluated on the **[FLORES-200]** benchmark,  of ~1012 English–Faroese pairs.  


#### Metrics and Results

- **BLEU**: **[0.175]** 
- **chrF**: **[49.5]**
- **BERTScore f1**: **[0.948]**

Human evaluation was also performed (see paper)


## Citation []

[COMING SOON]

---
## Framework versions 

- PEFT 0.13.0