metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: resnet101-base_tobacco-cnn_tobacco3482_kd_CEKD_t2.5_a0.9
results: []
resnet101-base_tobacco-cnn_tobacco3482_kd_CEKD_t2.5_a0.9
This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8672
- Accuracy: 0.71
- Brier Loss: 0.4047
- Nll: 2.1924
- F1 Micro: 0.7100
- F1 Macro: 0.6463
- Ece: 0.2420
- Aurc: 0.1050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 13 | 2.1239 | 0.16 | 0.8967 | 8.4233 | 0.16 | 0.1062 | 0.2101 | 0.8304 |
No log | 2.0 | 26 | 2.1201 | 0.14 | 0.8961 | 8.2220 | 0.14 | 0.0876 | 0.1970 | 0.8491 |
No log | 3.0 | 39 | 2.0724 | 0.215 | 0.8865 | 6.2039 | 0.2150 | 0.1169 | 0.2432 | 0.7837 |
No log | 4.0 | 52 | 2.0291 | 0.185 | 0.8773 | 5.6169 | 0.185 | 0.0792 | 0.2329 | 0.7651 |
No log | 5.0 | 65 | 1.9592 | 0.215 | 0.8614 | 6.0237 | 0.2150 | 0.0835 | 0.2493 | 0.7373 |
No log | 6.0 | 78 | 1.9039 | 0.205 | 0.8483 | 5.9575 | 0.205 | 0.0619 | 0.2493 | 0.7526 |
No log | 7.0 | 91 | 1.8651 | 0.26 | 0.8381 | 5.6215 | 0.26 | 0.1490 | 0.2663 | 0.6747 |
No log | 8.0 | 104 | 1.8342 | 0.225 | 0.8311 | 5.7631 | 0.225 | 0.1071 | 0.2425 | 0.6919 |
No log | 9.0 | 117 | 1.8057 | 0.31 | 0.8218 | 5.2969 | 0.31 | 0.2118 | 0.2795 | 0.6489 |
No log | 10.0 | 130 | 1.5737 | 0.46 | 0.7277 | 5.1748 | 0.46 | 0.2853 | 0.3279 | 0.2977 |
No log | 11.0 | 143 | 1.5629 | 0.415 | 0.7331 | 4.8259 | 0.415 | 0.2846 | 0.2924 | 0.3880 |
No log | 12.0 | 156 | 1.5283 | 0.45 | 0.7135 | 4.0012 | 0.45 | 0.3122 | 0.3298 | 0.3197 |
No log | 13.0 | 169 | 1.4200 | 0.51 | 0.6674 | 3.9849 | 0.51 | 0.3400 | 0.3259 | 0.2549 |
No log | 14.0 | 182 | 1.4334 | 0.535 | 0.6710 | 3.7006 | 0.535 | 0.3840 | 0.3291 | 0.2584 |
No log | 15.0 | 195 | 1.4306 | 0.45 | 0.6854 | 3.8260 | 0.45 | 0.3120 | 0.3055 | 0.4297 |
No log | 16.0 | 208 | 1.3175 | 0.585 | 0.6174 | 3.3484 | 0.585 | 0.4401 | 0.3406 | 0.1916 |
No log | 17.0 | 221 | 1.2680 | 0.57 | 0.5998 | 3.1408 | 0.57 | 0.4356 | 0.2903 | 0.2136 |
No log | 18.0 | 234 | 1.2605 | 0.58 | 0.6020 | 3.2085 | 0.58 | 0.4711 | 0.2915 | 0.2355 |
No log | 19.0 | 247 | 1.2292 | 0.61 | 0.5791 | 3.0633 | 0.61 | 0.5021 | 0.2929 | 0.2082 |
No log | 20.0 | 260 | 1.3872 | 0.54 | 0.6604 | 3.2778 | 0.54 | 0.4604 | 0.3284 | 0.3506 |
No log | 21.0 | 273 | 1.1646 | 0.625 | 0.5520 | 2.8539 | 0.625 | 0.5193 | 0.2828 | 0.1885 |
No log | 22.0 | 286 | 1.1565 | 0.655 | 0.5438 | 2.6915 | 0.655 | 0.5437 | 0.3430 | 0.1549 |
No log | 23.0 | 299 | 1.1041 | 0.625 | 0.5298 | 2.9930 | 0.625 | 0.5241 | 0.2423 | 0.1906 |
No log | 24.0 | 312 | 1.0448 | 0.685 | 0.4895 | 2.8196 | 0.685 | 0.5846 | 0.2701 | 0.1411 |
No log | 25.0 | 325 | 1.0623 | 0.695 | 0.4904 | 2.6903 | 0.695 | 0.6086 | 0.2762 | 0.1435 |
No log | 26.0 | 338 | 0.9872 | 0.695 | 0.4607 | 2.6336 | 0.695 | 0.5953 | 0.2728 | 0.1180 |
No log | 27.0 | 351 | 0.9789 | 0.705 | 0.4580 | 2.6326 | 0.705 | 0.6127 | 0.2579 | 0.1171 |
No log | 28.0 | 364 | 1.0033 | 0.685 | 0.4707 | 2.5747 | 0.685 | 0.5906 | 0.2747 | 0.1291 |
No log | 29.0 | 377 | 1.0152 | 0.7 | 0.4789 | 2.4333 | 0.7 | 0.6260 | 0.2951 | 0.1739 |
No log | 30.0 | 390 | 1.0107 | 0.715 | 0.4684 | 2.5194 | 0.715 | 0.6401 | 0.3197 | 0.1389 |
No log | 31.0 | 403 | 0.9511 | 0.69 | 0.4445 | 2.5648 | 0.69 | 0.6131 | 0.2648 | 0.1298 |
No log | 32.0 | 416 | 0.9586 | 0.735 | 0.4448 | 2.3342 | 0.735 | 0.6578 | 0.2941 | 0.1275 |
No log | 33.0 | 429 | 1.0010 | 0.73 | 0.4625 | 2.4748 | 0.7300 | 0.6613 | 0.3307 | 0.1202 |
No log | 34.0 | 442 | 0.9481 | 0.71 | 0.4361 | 2.4986 | 0.7100 | 0.6456 | 0.2856 | 0.1228 |
No log | 35.0 | 455 | 0.9190 | 0.69 | 0.4323 | 2.6586 | 0.69 | 0.6265 | 0.2538 | 0.1250 |
No log | 36.0 | 468 | 0.9226 | 0.715 | 0.4350 | 2.2652 | 0.715 | 0.6507 | 0.2868 | 0.1328 |
No log | 37.0 | 481 | 0.9017 | 0.725 | 0.4182 | 2.5141 | 0.7250 | 0.6590 | 0.2547 | 0.1013 |
No log | 38.0 | 494 | 0.9092 | 0.72 | 0.4218 | 2.5171 | 0.72 | 0.6495 | 0.2677 | 0.1055 |
1.0958 | 39.0 | 507 | 0.9093 | 0.71 | 0.4221 | 2.6479 | 0.7100 | 0.6456 | 0.2567 | 0.1185 |
1.0958 | 40.0 | 520 | 0.8926 | 0.71 | 0.4204 | 2.3785 | 0.7100 | 0.6522 | 0.2396 | 0.1153 |
1.0958 | 41.0 | 533 | 0.8928 | 0.715 | 0.4157 | 2.5719 | 0.715 | 0.6487 | 0.2708 | 0.1067 |
1.0958 | 42.0 | 546 | 0.8967 | 0.715 | 0.4247 | 2.6422 | 0.715 | 0.6495 | 0.2525 | 0.1174 |
1.0958 | 43.0 | 559 | 0.8773 | 0.695 | 0.4116 | 2.5548 | 0.695 | 0.6400 | 0.2491 | 0.1142 |
1.0958 | 44.0 | 572 | 0.8660 | 0.71 | 0.4036 | 2.2950 | 0.7100 | 0.6535 | 0.2401 | 0.1009 |
1.0958 | 45.0 | 585 | 0.8718 | 0.72 | 0.4057 | 2.4922 | 0.72 | 0.6551 | 0.2624 | 0.0998 |
1.0958 | 46.0 | 598 | 0.8737 | 0.7 | 0.4070 | 2.4455 | 0.7 | 0.6416 | 0.2360 | 0.1052 |
1.0958 | 47.0 | 611 | 0.8707 | 0.715 | 0.4094 | 2.3519 | 0.715 | 0.6494 | 0.2514 | 0.1086 |
1.0958 | 48.0 | 624 | 0.8640 | 0.705 | 0.4039 | 2.3765 | 0.705 | 0.6430 | 0.2538 | 0.1041 |
1.0958 | 49.0 | 637 | 0.8702 | 0.7 | 0.4066 | 2.5524 | 0.7 | 0.6423 | 0.2160 | 0.1080 |
1.0958 | 50.0 | 650 | 0.8672 | 0.71 | 0.4047 | 2.1924 | 0.7100 | 0.6463 | 0.2420 | 0.1050 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.2.0.dev20231002
- Datasets 2.7.1
- Tokenizers 0.13.3