resnet101_rvl-cdip

This model is a fine-tuned version of microsoft/resnet-101 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6158
  • Accuracy: 0.8210
  • Brier Loss: 0.2556
  • Nll: 1.7696
  • F1 Micro: 0.8210
  • F1 Macro: 0.8209
  • Ece: 0.0176
  • Aurc: 0.0418

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
1.3521 1.0 5000 1.2626 0.6133 0.5108 2.7262 0.6133 0.6042 0.0455 0.1644
0.942 2.0 10000 0.9005 0.7318 0.3723 2.2139 0.7318 0.7293 0.0174 0.0862
0.7983 3.0 15000 0.7691 0.7723 0.3198 2.0444 0.7723 0.7714 0.0139 0.0641
0.7167 4.0 20000 0.7048 0.7924 0.2931 1.9414 0.7924 0.7931 0.0135 0.0541
0.6656 5.0 25000 0.6658 0.8052 0.2770 1.8581 0.8052 0.8056 0.0108 0.0486
0.6252 6.0 30000 0.6415 0.8117 0.2670 1.8157 0.8117 0.8112 0.0128 0.0455
0.6038 7.0 35000 0.6269 0.8176 0.2607 1.7833 0.8176 0.8180 0.0144 0.0432
0.5784 8.0 40000 0.6217 0.8195 0.2583 1.7723 0.8195 0.8195 0.0151 0.0425
0.5583 9.0 45000 0.6150 0.8214 0.2553 1.7719 0.8214 0.8214 0.0164 0.0415
0.5519 10.0 50000 0.6158 0.8210 0.2556 1.7696 0.8210 0.8209 0.0176 0.0418

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3
Downloads last month
194
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bdpc/resnet101_rvl-cdip

Finetuned
(8)
this model