YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

LayoutXLM finetuned on XFUN.ja

import torch
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from pathlib import Path
from itertools import chain
from tqdm.notebook import tqdm
from pdf2image import convert_from_path
from transformers import LayoutXLMProcessor, LayoutLMv2ForTokenClassification

import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"

labels = [
    'O',
    'B-QUESTION',
    'B-ANSWER',
    'B-HEADER',
    'I-ANSWER',
    'I-QUESTION',
    'I-HEADER'
]
id2label = {v: k for v, k in enumerate(labels)}
label2id = {k: v for v, k in enumerate(labels)}

def unnormalize_box(bbox, width, height):
    return [
         width * (bbox[0] / 1000),
         height * (bbox[1] / 1000),
         width * (bbox[2] / 1000),
         height * (bbox[3] / 1000),
    ]

def iob_to_label(label):
    label = label[2:]
    if not label:
        return 'other'
    return label

label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}

def infer(image, processor, model, label2color):
    # Use this if you're loading images
    # image = Image.open(img_path).convert("RGB")
    
    image = image.convert("RGB") # loading PDFs
    encoding = processor(image, return_offsets_mapping=True, return_tensors="pt", truncation=True, max_length=514)
    offset_mapping = encoding.pop('offset_mapping')
    outputs = model(**encoding)
    predictions = outputs.logits.argmax(-1).squeeze().tolist()
    token_boxes = encoding.bbox.squeeze().tolist()

    width, height = image.size
    is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0

    true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
    true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
    draw = ImageDraw.Draw(image)

    font = ImageFont.load_default()

    for prediction, box in zip(true_predictions, true_boxes):
        predicted_label = iob_to_label(prediction).lower()
        draw.rectangle(box, outline=label2color[predicted_label])
        draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)

    return image

processor = LayoutXLMProcessor.from_pretrained('beomus/layoutxlm')
model = LayoutLMv2ForTokenClassification.from_pretrained("beomus/layoutxlm")


# imgs = [img_path for img_path in Path('/your/path/imgs/').glob('*.jpg')]

imgs = [convert_from_path(img_path) for img_path in Path('/your/path/pdfs/').glob('*.pdf')]
imgs = list(chain.from_iterable(imgs))


outputs = [infer(img_path, processor, model, label2color) for img_path in tqdm(imgs)]

# type(outputs[0]) -> PIL.Image.Image
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.