File size: 2,698 Bytes
c74ff9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
# LayoutXLM finetuned on XFUN.ja
```python
import torch
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from pathlib import Path
from itertools import chain
from tqdm.notebook import tqdm
from pdf2image import convert_from_path
from transformers import LayoutXLMProcessor, LayoutLMv2ForTokenClassification
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
labels = [
'O',
'B-QUESTION',
'B-ANSWER',
'B-HEADER',
'I-ANSWER',
'I-QUESTION',
'I-HEADER'
]
id2label = {v: k for v, k in enumerate(labels)}
label2id = {k: v for v, k in enumerate(labels)}
def unnormalize_box(bbox, width, height):
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
def iob_to_label(label):
label = label[2:]
if not label:
return 'other'
return label
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
def infer(image, processor, model, label2color):
# Use this if you're loading images
# image = Image.open(img_path).convert("RGB")
image = image.convert("RGB") # loading PDFs
encoding = processor(image, return_offsets_mapping=True, return_tensors="pt", truncation=True, max_length=514)
offset_mapping = encoding.pop('offset_mapping')
outputs = model(**encoding)
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
width, height = image.size
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for prediction, box in zip(true_predictions, true_boxes):
predicted_label = iob_to_label(prediction).lower()
draw.rectangle(box, outline=label2color[predicted_label])
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
return image
processor = LayoutXLMProcessor.from_pretrained('beomus/layoutxlm')
model = LayoutLMv2ForTokenClassification.from_pretrained("beomus/layoutxlm")
# imgs = [img_path for img_path in Path('/your/path/imgs/').glob('*.jpg')]
imgs = [convert_from_path(img_path) for img_path in Path('/your/path/pdfs/').glob('*.pdf')]
imgs = list(chain.from_iterable(imgs))
outputs = [infer(img_path, processor, model, label2color) for img_path in tqdm(imgs)]
# type(outputs[0]) -> PIL.Image.Image
``` |