File size: 9,656 Bytes
1590525 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# -*- coding: utf-8 -*-
"""FINALberturk_ensemble.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1yAhhmVl42CAD5BCvUCtjMO7utTU2cGqE
"""
!pip install transformers
# Commented out IPython magic to ensure Python compatibility.
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
#For EDA
import matplotlib.pyplot as plt
import seaborn as sns
# Packages for general use throughout the notebook.
import random
import warnings
import time
# %matplotlib inline
from sklearn.model_selection import train_test_split
# to see columns properly
pd.set_option('display.max_colwidth', None)
# for build our model
import tensorflow as tf
from tensorflow.keras.layers import Add, GlobalAvgPool1D, MaxPool1D, Activation, BatchNormalization, Embedding, LSTM, Dense, Bidirectional, Input, SpatialDropout1D, Dropout, Conv1D
from tensorflow.keras import Model
from transformers import BertTokenizer, TFBertModel
from tensorflow.keras.activations import relu
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, precision_score, recall_score, f1_score
# Input data files are available in the read-only "../input/" directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
import torch
import numpy as np
from transformers import BertTokenizer, BertModel
import time
from datetime import datetime
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from torch.optim import Adam
from tqdm import tqdm
from torch.optim.lr_scheduler import ReduceLROnPlateau
!pip install session_info
import session_info
session_info.show()
dataset = pd.read_csv(r"train_with_preprocess.csv")
dataset
df=dataset[[ "first_p_sec_sw","target"]]
df.columns=["text","target"]
df
tokenizer = BertTokenizer.from_pretrained("dbmdz/bert-base-turkish-128k-uncased")
labels = {'INSULT':0,
'OTHER':1,
'PROFANITY':2,
'RACIST':3,
'SEXIST':4
}
class Dataset(torch.utils.data.Dataset):
def __init__(self, df):
self.labels = [labels[label] for label in df['target']]
self.texts = [tokenizer(text,
padding='max_length', max_length = 512, truncation=True,
return_tensors="pt") for text in df['text']]
def classes(self):
return self.labels
def __len__(self):
return len(self.labels)
def get_batch_labels(self, idx):
# Fetch a batch of labels
return np.array(self.labels[idx])
def get_batch_texts(self, idx):
# Fetch a batch of inputs
return self.texts[idx]
def __getitem__(self, idx):
batch_texts = self.get_batch_texts(idx)
batch_y = self.get_batch_labels(idx)
return batch_texts, batch_y
np.random.seed(112)
df_train, df_val, df_test = np.split(df.sample(frac=1, random_state=42),
[int(.8*len(df)), int(.9*len(df))])
print(len(df_train),len(df_val), len(df_test))
class BertClassifierConv1D(nn.Module):
def __init__(self, dropout=0.5, num_classes=5):
super(BertClassifierConv1D, self).__init__()
self.bert = BertModel.from_pretrained('dbmdz/bert-base-turkish-128k-uncased', return_dict=True)
self.conv1d = nn.Conv1d(in_channels=self.bert.config.hidden_size, out_channels=128, kernel_size=5)
self.bilstm = nn.LSTM(input_size=128, hidden_size=64, num_layers=1, bidirectional=True, batch_first=True)
self.dropout = nn.Dropout(dropout)
self.linear = nn.Linear(128, num_classes)
def forward(self, input_id, mask):
output = self.bert(input_ids=input_id, attention_mask=mask).last_hidden_state
output = output.permute(0, 2, 1) # swap dimensions to prepare for Conv1d layer
output = self.conv1d(output)
output, _ = self.bilstm(output.transpose(1, 2))
output = self.dropout(output)
output = self.linear(output.mean(dim=1))
return output
def plot_graphs(history, string):
plt.plot(history[string])
plt.plot(history['val_'+string])
plt.xlabel("Epochs")
plt.ylabel(string)
plt.legend([string, 'val_'+string])
plt.show()
def train(model, train_data, val_data, learning_rate, epochs,patience=3):
train, val = Dataset(train_data), Dataset(val_data)
train_dataloader = torch.utils.data.DataLoader(train, batch_size=32, shuffle=True)
val_dataloader = torch.utils.data.DataLoader(val, batch_size=32)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
criterion = nn.CrossEntropyLoss()
optimizer = Adam(model.parameters(), lr= learning_rate)
if use_cuda:
model = model.cuda()
criterion = criterion.cuda()
history = {'loss': [], 'accuracy': [], 'val_loss': [], 'val_accuracy': []}
best_val_loss = float('inf')
counter = 0
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=5, factor=0.1, verbose=True, cooldown=0)
for epoch_num in range(epochs):
total_acc_train = 0
total_loss_train = 0
for train_input, train_label in tqdm(train_dataloader):
train_label = train_label.to(device)
mask = train_input['attention_mask'].to(device)
input_id = train_input['input_ids'].squeeze(1).to(device)
output = model(input_id, mask)
batch_loss = criterion(output, train_label.long())
total_loss_train += batch_loss.item()
acc = (output.argmax(dim=1) == train_label).sum().item()
total_acc_train += acc
model.zero_grad()
batch_loss.backward()
optimizer.step()
total_acc_val = 0
total_loss_val = 0
with torch.no_grad():
for val_input, val_label in val_dataloader:
val_label = val_label.to(device)
mask = val_input['attention_mask'].to(device)
input_id = val_input['input_ids'].squeeze(1).to(device)
output = model(input_id, mask)
batch_loss = criterion(output, val_label.long())
total_loss_val += batch_loss.item()
acc = (output.argmax(dim=1) == val_label).sum().item()
total_acc_val += acc
train_loss = total_loss_train / len(train_data)
train_acc = total_acc_train / len(train_data)
val_loss = total_loss_val / len(val_data)
val_acc = total_acc_val / len(val_data)
history['loss'].append(train_loss)
history['accuracy'].append(train_acc)
history['val_loss'].append(val_loss)
history['val_accuracy'].append(val_acc)
print(f'Epochs: {epoch_num + 1} | Train Loss: {train_loss:.3f} | Train Accuracy: {train_acc:.3f} | Val Loss: {val_loss:.3f} | Val Accuracy: {val_acc:.3f}')
if val_loss < best_val_loss:
best_val_loss = val_loss
counter = 0
else:
counter += 1
if counter >= patience:
print(f'Early stopping at epoch {epoch_num+1}')
break
scheduler.step(val_loss)
plot_graphs(history, "accuracy")
plot_graphs(history, "loss")
EPOCHS = 15
model = BertClassifierConv1D()
LR = 1e-6
train(model, df_train, df_val, LR, EPOCHS)
!pip install datetime
now = datetime.now()
seed = int(now.strftime("%Y%m%d%H%M%S")) # daily
print(seed)
random.seed(seed)
random_time=random.randint(0, 350)
model_path= 'model_weights'+str(random_time)+".pth"
torch.save(model.state_dict(), model_path)
print(model_path)
def evaluate(model, test_data):
test = Dataset(test_data)
test_dataloader = torch.utils.data.DataLoader(test, batch_size=32)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
if use_cuda:
model = model.cuda()
total_acc_test = 0
output_indices = []
test_labels=[]
with torch.no_grad():
for test_input, test_label in test_dataloader:
test_label = test_label.to(device)
mask = test_input['attention_mask'].to(device)
input_id = test_input['input_ids'].squeeze(1).to(device)
output = model(input_id, mask)
acc = (output.argmax(dim=1) == test_label).sum().item()
total_acc_test += acc
batch_indices = output.argmax(dim=1).tolist()
output_indices.extend(batch_indices)
test_labels.extend(test_label)
print(f'Test Accuracy: {total_acc_test / len(test_data): .3f}')
return output_indices, test_labels
y_pred,y_test=evaluate(model, df_test)
y_pred_tensor = torch.tensor(y_pred)
y_test_tensor = torch.tensor(y_test)
print(classification_report(np.array(y_pred_tensor.cpu()), np.array(y_test_tensor.cpu()), output_dict=True))
from sklearn.metrics import f1_score
f1_score(np.array(y_test_tensor.cpu()),np.array(y_pred_tensor.cpu()), average='macro')
def conf_matrix(y_test,y_pred):
cm = confusion_matrix(y_test,y_pred, normalize="true")
sns.heatmap(cm, annot=True, cmap="Blues",xticklabels=["INSULT","OTHER","PROFANITY","RACIST","SECIST"],yticklabels=["INSULT","OTHER","PROFANITY","RACIST","SECIST"] )
plt.xlabel('Tahmin Edilen Sınıf')
plt.ylabel('Gerçek Sınıf')
plt.show()
conf_matrix(np.array(y_pred_tensor.cpu()), np.array(y_test_tensor.cpu())) |