|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- emotion |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: xtremedistil-emotion |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: emotion |
|
type: emotion |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9265 |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: emotion |
|
type: emotion |
|
config: default |
|
split: test |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.926 |
|
verified: true |
|
- name: Precision Macro |
|
type: precision |
|
value: 0.8855308537052737 |
|
verified: true |
|
- name: Precision Micro |
|
type: precision |
|
value: 0.926 |
|
verified: true |
|
- name: Precision Weighted |
|
type: precision |
|
value: 0.9281282413639949 |
|
verified: true |
|
- name: Recall Macro |
|
type: recall |
|
value: 0.8969894921856228 |
|
verified: true |
|
- name: Recall Micro |
|
type: recall |
|
value: 0.926 |
|
verified: true |
|
- name: Recall Weighted |
|
type: recall |
|
value: 0.926 |
|
verified: true |
|
- name: F1 Macro |
|
type: f1 |
|
value: 0.8903400738742536 |
|
verified: true |
|
- name: F1 Micro |
|
type: f1 |
|
value: 0.926 |
|
verified: true |
|
- name: F1 Weighted |
|
type: f1 |
|
value: 0.9265018282649476 |
|
verified: true |
|
- name: loss |
|
type: loss |
|
value: 0.2258329838514328 |
|
verified: true |
|
--- |
|
|
|
# xtremedistil-emotion |
|
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the emotion dataset. |
|
It achieves the following results on the evaluation set: |
|
- Accuracy: 0.9265 |
|
|
|
|
|
### Training hyperparameters |
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- num_epochs: 24 |
|
|
|
### Training results |
|
<pre> |
|
Epoch Training Loss Validation Loss Accuracy |
|
1 No log 1.238589 0.609000 |
|
2 No log 0.934423 0.714000 |
|
3 No log 0.768701 0.742000 |
|
4 1.074800 0.638208 0.805500 |
|
5 1.074800 0.551363 0.851500 |
|
6 1.074800 0.476291 0.875500 |
|
7 1.074800 0.427313 0.883500 |
|
8 0.531500 0.392633 0.886000 |
|
9 0.531500 0.357979 0.892000 |
|
10 0.531500 0.330304 0.899500 |
|
11 0.531500 0.304529 0.907000 |
|
12 0.337200 0.287447 0.918000 |
|
13 0.337200 0.277067 0.921000 |
|
14 0.337200 0.259483 0.921000 |
|
15 0.337200 0.257564 0.916500 |
|
16 0.246200 0.241970 0.919500 |
|
17 0.246200 0.241537 0.921500 |
|
18 0.246200 0.235705 0.924500 |
|
19 0.246200 0.237325 0.920500 |
|
20 0.201400 0.229699 0.923500 |
|
21 0.201400 0.227426 0.923000 |
|
22 0.201400 0.228554 0.924000 |
|
23 0.201400 0.226941 0.925500 |
|
24 0.184300 0.225816 0.926500 |
|
</pre> |
|
|