bergum
Add evaluation results on the default config of emotion (#2)
0a67a88
|
raw
history blame
2.78 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: xtremedistil-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9265
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.926
verified: true
- name: Precision Macro
type: precision
value: 0.8855308537052737
verified: true
- name: Precision Micro
type: precision
value: 0.926
verified: true
- name: Precision Weighted
type: precision
value: 0.9281282413639949
verified: true
- name: Recall Macro
type: recall
value: 0.8969894921856228
verified: true
- name: Recall Micro
type: recall
value: 0.926
verified: true
- name: Recall Weighted
type: recall
value: 0.926
verified: true
- name: F1 Macro
type: f1
value: 0.8903400738742536
verified: true
- name: F1 Micro
type: f1
value: 0.926
verified: true
- name: F1 Weighted
type: f1
value: 0.9265018282649476
verified: true
- name: loss
type: loss
value: 0.2258329838514328
verified: true
---
# xtremedistil-emotion
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.9265
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 8
- seed: 42
- num_epochs: 24
### Training results
<pre>
Epoch Training Loss Validation Loss Accuracy
1 No log 1.238589 0.609000
2 No log 0.934423 0.714000
3 No log 0.768701 0.742000
4 1.074800 0.638208 0.805500
5 1.074800 0.551363 0.851500
6 1.074800 0.476291 0.875500
7 1.074800 0.427313 0.883500
8 0.531500 0.392633 0.886000
9 0.531500 0.357979 0.892000
10 0.531500 0.330304 0.899500
11 0.531500 0.304529 0.907000
12 0.337200 0.287447 0.918000
13 0.337200 0.277067 0.921000
14 0.337200 0.259483 0.921000
15 0.337200 0.257564 0.916500
16 0.246200 0.241970 0.919500
17 0.246200 0.241537 0.921500
18 0.246200 0.235705 0.924500
19 0.246200 0.237325 0.920500
20 0.201400 0.229699 0.923500
21 0.201400 0.227426 0.923000
22 0.201400 0.228554 0.924000
23 0.201400 0.226941 0.925500
24 0.184300 0.225816 0.926500
</pre>