See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Meta-Llama-3.1-8B-Instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- databricks-dolly-15k_train_data.json
ds_type: json
path: /workspace/input_data/databricks-dolly-15k_train_data.json
type:
field_input: instruction
field_instruction: context
field_output: response
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 10
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hours_to_complete: 6
hub_model_id: besimray/miner_id_3_65eaec89-ddb3-4b65-866f-c621f95eea55_1730931497
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 5
mlflow_experiment_name: /tmp/databricks-dolly-15k_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
save_strategy: steps
sequence_len: 4096
started_at: '2024-11-06T22:18:17.692838'
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: besimray24-rayon
wandb_mode: online
wandb_project: Public_TuningSN
wandb_run: miner_id_24
wandb_runid: 65eaec89-ddb3-4b65-866f-c621f95eea55
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
miner_id_3_65eaec89-ddb3-4b65-866f-c621f95eea55_1730931497
This model is a fine-tuned version of unsloth/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5331
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8982 | 0.0014 | 1 | 2.0118 |
1.4115 | 0.0141 | 10 | 1.7198 |
1.5607 | 0.0282 | 20 | 1.5798 |
1.5161 | 0.0424 | 30 | 1.5666 |
1.5162 | 0.0565 | 40 | 1.5537 |
1.9686 | 0.0706 | 50 | 1.5470 |
1.707 | 0.0847 | 60 | 1.5475 |
1.6366 | 0.0988 | 70 | 1.5452 |
1.1905 | 0.1130 | 80 | 1.5459 |
1.3792 | 0.1271 | 90 | 1.5382 |
1.459 | 0.1412 | 100 | 1.5392 |
1.3699 | 0.1553 | 110 | 1.5354 |
1.4439 | 0.1694 | 120 | 1.5356 |
1.6577 | 0.1836 | 130 | 1.5331 |
1.8126 | 0.1977 | 140 | 1.5347 |
1.545 | 0.2118 | 150 | 1.5332 |
1.0026 | 0.2259 | 160 | 1.5331 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for besimray/miner_id_3_65eaec89-ddb3-4b65-866f-c621f95eea55_1730931497
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct
Finetuned
unsloth/Meta-Llama-3.1-8B-Instruct