bespin-global/klue-sroberta-base-continue-learning-by-mnr
ํด๋น ๋ชจ๋ธ์ KLUE/NLI, KLUE/STS ๋ฐ์ดํฐ์ ์ ํ์ฉํ์์ผ๋ฉฐ, sentence-transformers์ ๊ณต์ ๋ฌธ์ ๋ด ์๊ฐ๋ continue-learning ๋ฐฉ๋ฒ์ ํตํด ์๋์ ๊ฐ์ด ํ์ต๋์์ต๋๋ค.
- NLI ๋ฐ์ดํฐ์ ์ ํตํด nagative sampling ํ, MultipleNegativeRankingLoss๋ฅผ ํ์ฉํ์ฌ 1์ฐจ NLI training ์ํ
- 1์์ ํ์ต์๋ฃ ๋ ๋ชจ๋ธ์ STS ๋ฐ์ดํฐ์ ์ ํตํด, CosineSimilarityLoss๋ฅผ ํ์ฉํ์ฌ 2์ฐจ STS training ์ํ
ํ์ต์ ๊ดํ ์์ธํ ๋ด์ฉ์ Blog์ Colab ์ค์ต ์ฝ๋๋ฅผ ์ฐธ๊ณ ํด์ฃผ์ธ์.
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
model = AutoModel.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
EmbeddingSimilarityEvaluator: Evaluating the model on sts-test dataset:
- Cosine-Similarity :
- Pearson: 0.8901 Spearman: 0.8893
- Manhattan-Distance:
- Pearson: 0.8867 Spearman: 0.8818
- Euclidean-Distance:
- Pearson: 0.8875 Spearman: 0.8827
- Dot-Product-Similarity:
- Pearson: 0.8786 Spearman: 0.8735
- Average : 0.8892573547643868
Training
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 329 with parameters:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 4,
"evaluation_steps": 32,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 132,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
- Downloads last month
- 107,529