|
--- |
|
base_model: |
|
- Qwen/Qwen2.5-3B-Instruct |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- qwen2 |
|
- trl |
|
- sft |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- vi |
|
datasets: |
|
- beyoru/Tin_hoc_mcq |
|
--- |
|
|
|
# Uploaded model |
|
|
|
- **Developed by:** beyoru |
|
- **License:** apache-2.0 |
|
|
|
# Usage |
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "beyoru/MCQ-3B-o1" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
messages = [ |
|
{"role": "system", "content": "Tạo câu hỏi trắc nghiệm dựa theo nội dung đoạn văn dưới đây"}, |
|
{"role": "user", "content": "<YOUR CONTEXT>"} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
do_sample=True |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
# Notes: |
|
- For small datasets with narrow content which the model has already done well on our domain, and doesn't want the model to forget the knowledge => Just need to focus on o. |
|
- Fine-tuned lora with rank = 1 and alpha = 64, epoch = 1, linear (optim) |
|
- DoRA |
|
|
|
# Improvement |
|
- Increasing rank can help the model do better at robust structure. |
|
- Try more efficient fine-tuning |