billskar23's picture
Model save
68c7df9 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: videomae-base-videoMAE
    results: []

videomae-base-videoMAE

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6956
  • Accuracy: 0.8571
  • Precision: 0.8929
  • Recall: 0.8571
  • F1: 0.8571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 12825

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.4984 1.0 514 1.3741 0.4286 0.1837 0.4286 0.2571
0.3492 2.0 1028 0.9819 0.4286 0.1837 0.4286 0.2571
0.4071 3.0 1542 2.8074 0.4286 0.1837 0.4286 0.2571
0.3151 4.0 2056 0.2223 1.0 1.0 1.0 1.0
0.0053 5.0 2570 4.9944 0.4286 0.1837 0.4286 0.2571
0.0017 6.0 3084 0.3940 0.8571 0.8857 0.8571 0.8508
0.0092 7.0 3598 3.8118 0.4286 0.1837 0.4286 0.2571
0.0003 8.0 4112 4.5879 0.4286 0.1837 0.4286 0.2571
0.0973 9.0 4626 2.7723 0.4286 0.1837 0.4286 0.2571
0.0011 10.0 5140 4.0052 0.4286 0.1837 0.4286 0.2571
0.0 11.0 5654 1.5523 0.5714 0.7857 0.5714 0.5143
0.0 12.0 6168 1.4310 0.7143 0.8286 0.7143 0.7024
0.0 13.0 6682 1.4236 0.8571 0.8929 0.8571 0.8571
0.0 14.0 7196 1.4245 0.8571 0.8929 0.8571 0.8571
0.0 15.0 7710 1.4416 0.8571 0.8929 0.8571 0.8571
0.0 16.0 8224 1.4639 0.8571 0.8929 0.8571 0.8571
0.0 17.0 8738 1.4884 0.8571 0.8929 0.8571 0.8571
0.0 18.0 9252 1.5161 0.8571 0.8929 0.8571 0.8571
0.0 19.0 9766 1.5452 0.8571 0.8929 0.8571 0.8571
0.0 20.0 10280 1.5755 0.8571 0.8929 0.8571 0.8571
0.0 21.0 10794 1.6078 0.8571 0.8929 0.8571 0.8571
0.0 22.0 11308 1.6386 0.8571 0.8929 0.8571 0.8571
0.0 23.0 11822 1.6669 0.8571 0.8929 0.8571 0.8571
0.0 24.0 12336 1.6868 0.8571 0.8929 0.8571 0.8571
0.0 24.9514 12825 1.6956 0.8571 0.8929 0.8571 0.8571

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1