|
--- |
|
language: sv |
|
widget: |
|
- text: "Jag är en svensk språkmodell." |
|
--- |
|
|
|
## Model series |
|
This model is part of a series of models training on TPU with Flax Jax during Huggingface Flax/Jax challenge. |
|
|
|
## Gpt models |
|
|
|
## Swedish Gpt |
|
https://huggingface.co/birgermoell/swedish-gpt/ |
|
|
|
## Swedish gpt wiki |
|
https://huggingface.co/flax-community/swe-gpt-wiki |
|
|
|
# Nordic gpt wiki |
|
https://huggingface.co/flax-community/nordic-gpt-wiki |
|
|
|
## Dansk gpt wiki |
|
https://huggingface.co/flax-community/dansk-gpt-wiki |
|
|
|
## Norsk gpt wiki |
|
https://huggingface.co/flax-community/norsk-gpt-wiki |
|
|
|
## Roberta models |
|
|
|
## Nordic Roberta Wiki |
|
https://huggingface.co/flax-community/nordic-roberta-wiki |
|
|
|
## Swe Roberta Wiki Oscar |
|
https://huggingface.co/flax-community/swe-roberta-wiki-oscar |
|
|
|
## Roberta Swedish Scandi |
|
https://huggingface.co/birgermoell/roberta-swedish-scandi |
|
|
|
## Roberta Swedish |
|
https://huggingface.co/birgermoell/roberta-swedish |
|
|
|
## Swedish T5 model |
|
https://huggingface.co/birgermoell/t5-base-swedish |
|
|
|
|
|
|
|
# GPT-svenska-wikipedia |
|
A swedish GPT2 style model trained using Flax CLM pipeline on the Swedish |
|
part of the wiki40b dataset and the Oscar dataset. |
|
https://huggingface.co/datasets/wiki40b |
|
|
|
The model was trained for around 22600 steps (42 hours) as part of the Huggingface Jax/Flax challenge with the following loss and learning rate |
|
Loss: 3.1715331077575684, Learning Rate: 0.0024816440418362617) |
|
|
|
The model could likely be trained for longer. |
|
|
|
## Data cleaning and preprocessing |
|
The data was cleaned and preprocessed using the following script. Make sure to install depencies for beam_runner to make the dataset work. |
|
|
|
```python |
|
from datasets import load_dataset |
|
def load_and_clean_wiki(): |
|
dataset = load_dataset('wiki40b', 'sv', beam_runner='DirectRunner', split="train") |
|
#dataset = load_dataset('wiki40b', 'sv', beam_runner='DirectRunner') |
|
dataset = dataset.remove_columns(['wikidata_id', 'version_id']) |
|
filtered_dataset = dataset.map(filter_wikipedia) |
|
# filtered_dataset[:3] |
|
# print(filtered_dataset[:3]) |
|
return filtered_dataset |
|
|
|
def filter_wikipedia(batch): |
|
batch["text"] = " ".join(batch["text"].split("\ |
|
_START_SECTION_\ |
|
")) |
|
batch["text"] = " ".join(batch["text"].split("\ |
|
_START_ARTICLE_\ |
|
")) |
|
batch["text"] = " ".join(batch["text"].split("\ |
|
_START_ARTICLE_\ |
|
")) |
|
batch["text"] = " ".join(batch["text"].split("\ |
|
_START_PARAGRAPH_\ |
|
")) |
|
batch["text"] = " ".join(batch["text"].split("_NEWLINE_")) |
|
batch["text"] = " ".join(batch["text"].split("\xa0")) |
|
return batch |
|
``` |
|
|
|
## Training script |
|
The following training script was used to train the model. |
|
```bash |
|
./run_clm_flax.py --output_dir="${MODEL_DIR}" --model_type="gpt2" --config_name="${MODEL_DIR}" --tokenizer_name="${MODEL_DIR}" --dataset_name="wiki40b" --dataset_config_name="sv" --do_train --do_eval --block_size="512" --per_device_train_batch_size="64" --per_device_eval_batch_size="64" --learning_rate="5e-3" --warmup_steps="1000" --adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" --overwrite_output_dir --num_train_epochs="20" --logging_steps="500" --save_steps="1000" --eval_steps="2500" --push_to_hub |
|
``` |
|
|
|
|