|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
library_name: generic |
|
language: |
|
- vi |
|
widget: |
|
- source_sentence: Làm thế nào Đại học Bách khoa Hà Nội thu hút sinh viên quốc tế? |
|
sentences: |
|
- >- |
|
Đại học Bách khoa Hà Nội đã phát triển các chương trình đào tạo bằng tiếng |
|
Anh để làm cho việc học tại đây dễ dàng hơn cho sinh viên quốc tế. |
|
- >- |
|
Môi trường học tập đa dạng và sự hỗ trợ đầy đủ cho sinh viên quốc tế tại Đại |
|
học Bách khoa Hà Nội giúp họ thích nghi nhanh chóng. |
|
- Hà Nội có khí hậu mát mẻ vào mùa thu. |
|
- Các món ăn ở Hà Nội rất ngon và đa dạng. |
|
license: apache-2.0 |
|
--- |
|
|
|
# bkai-foundation-models/vietnamese-bi-encoder |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. |
|
|
|
We train the model on a merged training dataset that consists of: |
|
- MS Macro (translated into Vietnamese) |
|
- SQuAD v2 (translated into Vietnamese) |
|
- 80% of the training set from the Legal Text Retrieval Zalo 2021 challenge |
|
|
|
We use [phobert-base-v2](https://github.com/VinAIResearch/PhoBERT) as the pre-trained backbone. |
|
|
|
Here are the results on the remaining 20% of the training set from the Legal Text Retrieval Zalo 2021 challenge: |
|
|
|
| Pretrained Model | Training Datasets | Acc@1 | Acc@10 | Acc@100 | Pre@10 | MRR@10 | |
|
|-------------------------------|---------------------------------------|:------------:|:-------------:|:--------------:|:-------------:|:-------------:| |
|
| [Vietnamese-SBERT](https://huggingface.co/keepitreal/vietnamese-sbert) | - | 32.34 | 52.97 | 89.84 | 7.05 | 45.30 | |
|
| PhoBERT-base-v2 | MSMACRO | 47.81 | 77.19 | 92.34 | 7.72 | 58.37 | |
|
| PhoBERT-base-v2 | MSMACRO + SQuADv2.0 + 80% Zalo | 73.28 | 93.59 | 98.85 | 9.36 | 80.73 | |
|
|
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! |
|
sentences = ["Cô ấy là một người vui_tính .", "Cô ấy cười nói suốt cả ngày ."] |
|
|
|
model = SentenceTransformer('bkai-foundation-models/vietnamese-bi-encoder') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
## Usage (Widget HuggingFace) |
|
The widget use custom pipeline on top of the default pipeline by adding additional word segmenter before PhobertTokenizer. So you do not need to segment words before using the API: |
|
|
|
An example could be seen in Hosted inference API. |
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
|
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings, we could use pyvi, underthesea, RDRSegment to segment words |
|
sentences = ['Cô ấy là một người vui_tính .', 'Cô ấy cười nói suốt cả ngày .'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('bkai-foundation-models/vietnamese-bi-encoder') |
|
model = AutoModel.from_pretrained('bkai-foundation-models/vietnamese-bi-encoder') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Training |
|
|
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 17584 with parameters: |
|
|
|
``` |
|
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
|
|
``` |
|
{'scale': 20.0, 'similarity_fct': 'cos_sim'} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
|
|
``` |
|
{ |
|
"epochs": 15, |
|
"evaluation_steps": 0, |
|
"evaluator": "NoneType", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 1000, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
## Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) |
|
) |
|
``` |
|
|
|
### Please cite our manuscript if this dataset is used for your work |
|
``` |
|
@article{duc2024towards, |
|
title={Towards Comprehensive Vietnamese Retrieval-Augmented Generation and Large Language Models}, |
|
author={Nguyen Quang Duc, Le Hai Son, Nguyen Duc Nhan, Nguyen Dich Nhat Minh, Le Thanh Huong, Dinh Viet Sang}, |
|
journal={arXiv preprint arXiv:2403.01616}, |
|
year={2024} |
|
} |
|
``` |