uzbek-sentiment-analysis

It achieves the following results on the evaluation set:

  • eval_loss: 0.6374
  • eval_accuracy: {'accuracy': 0.7862348178137651}
  • eval_f1score: {'f1': 0.7880364308572618}
  • eval_runtime: 7.593
  • eval_samples_per_second: 162.65
  • eval_steps_per_second: 20.414
  • step: 0

Model description

uzbek-sentiment-analysis modelidan foydalanish.

from transformers import pipeline

pipe = pipeline('sentimennt-analysis', model='ai-nightcoder/uzbek-sentiment-analysis-v5')

text = "bu ovqatni men juda ham yaxshi ko'raman."
pipe(text)[0]['label']

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 864
  • num_epochs: 7

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.4.0.dev20240416+cu121
  • Datasets 1.18.3
  • Tokenizers 0.19.1
Downloads last month
26
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for blackhole33/uzbek-sentiment-analysis-v5

Finetuned
(7152)
this model