whisper_result
This model is a fine-tuned version of openai/whisper-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6586
- Wer Ortho: 52.0665
- Wer: 49.1825
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Wer Ortho |
---|---|---|---|---|---|
0.6179 | 0.03 | 1000 | 0.9762 | 60.3624 | 62.0464 |
0.505 | 0.07 | 2000 | 0.8327 | 54.8387 | 57.7117 |
0.4921 | 0.1 | 3000 | 0.7555 | 59.6111 | 63.5585 |
0.576 | 0.13 | 4000 | 0.7034 | 57.6226 | 58.9214 |
0.4169 | 0.17 | 5000 | 0.6763 | 44.5426 | 46.5726 |
0.3827 | 0.2 | 6000 | 0.6462 | 44.9403 | 47.0766 |
0.3509 | 0.23 | 7000 | 0.6331 | 46.4870 | 48.8407 |
0.4012 | 0.26 | 8000 | 0.6170 | 46.8847 | 49.3952 |
0.3634 | 0.3 | 9000 | 0.6864 | 47.4294 | 45.3822 |
0.3721 | 0.33 | 10000 | 0.6659 | 49.2944 | 46.4870 |
0.3198 | 0.36 | 11000 | 0.6586 | 52.0665 | 49.1825 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.13.3
- Downloads last month
- 2