RuBERT for Sentiment Analysis
This is a DeepPavlov/rubert-base-cased-conversational model trained on RuSentiment.
Labels
0: NEUTRAL
1: POSITIVE
2: NEGATIVE
How to use
import torch
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-rusentiment')
model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-rusentiment', return_dict=True)
@torch.no_grad()
def predict(text):
inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**inputs)
predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
predicted = torch.argmax(predicted, dim=1).numpy()
return predicted
Dataset used for model training
A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018.
- Downloads last month
- 2,331
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.