RuBERT for Sentiment Analysis

This is a DeepPavlov/rubert-base-cased-conversational model trained on RuSentiment.

Labels

0: NEUTRAL
1: POSITIVE
2: NEGATIVE

How to use


import torch
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizerFast

tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-rusentiment')
model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-rusentiment', return_dict=True)

@torch.no_grad()
def predict(text):
    inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
    outputs = model(**inputs)
    predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
    predicted = torch.argmax(predicted, dim=1).numpy()
    return predicted

Dataset used for model training

RuSentiment

A. Rogers A. Romanov A. Rumshisky S. Volkova M. Gronas A. Gribov RuSentiment: An Enriched Sentiment Analysis Dataset for Social Media in Russian. Proceedings of COLING 2018.

Downloads last month
2,331
Safetensors
Model size
178M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for blanchefort/rubert-base-cased-sentiment-rusentiment

Adapters
3 models
Finetunes
1 model

Spaces using blanchefort/rubert-base-cased-sentiment-rusentiment 3