whisper-small-te / README.md
bnriiitb's picture
updated readme
25774f7
metadata
language:
  - te
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - Chai_Bisket_Stories_16-08-2021_14-17
metrics:
  - wer
model-index:
  - name: Whisper Small Telugu - Naga Budigam
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Chai_Bisket_Stories_16-08-2021_14-17
          type: Chai_Bisket_Stories_16-08-2021_14-17
          config: None
          split: None
          args: 'config: te, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 77.48711850971065

Whisper Small Telugu - Naga Budigam

This model is a fine-tuned version of openai/whisper-small on the Chai_Bisket_Stories_16-08-2021_14-17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7063
  • Wer: 77.4871

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2933 2.62 500 0.3849 86.6429
0.0692 5.24 1000 0.3943 82.7190
0.0251 7.85 1500 0.4720 82.4415
0.0098 10.47 2000 0.5359 81.6092
0.0061 13.09 2500 0.5868 75.9413
0.0025 15.71 3000 0.6235 76.6944
0.0009 18.32 3500 0.6634 78.3987
0.0005 20.94 4000 0.6776 77.1700
0.0002 23.56 4500 0.6995 78.2798
0.0001 26.18 5000 0.7063 77.4871

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.7.1
  • Tokenizers 0.13.2