bobox's picture
Training in progress, step 915, checkpoint
011f6ca verified
metadata
base_model: microsoft/deberta-v3-small
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:32500
  - loss:GISTEmbedLoss
widget:
  - source_sentence: What was the name of Jed's nephew in The Beverly Hillbillies?
    sentences:
      - >-
        Jed Clampett - The Beverly Hillbillies Characters - ShareTV Buddy Ebsen
        began his career as a dancer in the late 1920s in a Broadway chorus. He
        later formed a vaudeville ... Character Bio Although he had received
        little formal education, Jed Clampett had a good deal of common sense. A
        good-natured man, he is the apparent head of the family. Jed's wife
        (Elly May's mother) died, but is referred to in the episode "Duke Steals
        A Wife" as Rose Ellen. Jed was shown to be an expert marksman and was
        extremely loyal to his family and kinfolk. The huge oil pool in the
        swamp he owned was the beginning of his rags-to-riches journey to
        Beverly Hills. Although he longed for the old ways back in the hills, he
        made the best of being in Beverly Hills. Whenever he had anything on his
        mind, he would sit on the curbstone of his mansion and whittle until he
        came up with the answer. Jedediah, the version of Jed's name used in the
        1993 Beverly Hillbillies theatrical movie, was never mentioned in the
        original television series (though coincidentally, on Ebsen's subsequent
        series, Barnaby Jones, Barnaby's nephew J.R. was also named Jedediah).
        In one episode Jed and Granny reminisce about seeing Buddy Ebsen and
        Vilma Ebsen—a joking reference to the Ebsens' song and dance act. Jed
        appears in all 274 episodes. Episode Screenshots
      - a stove generates heat for cooking usually
      - >-
        Miss Marple series by Agatha Christie Miss Marple series 43 works, 13
        primary works Mystery series in order of publication. Miss Marple is
        introduced in The Murder at the Vicarage but the books can be read in
        any order. Mixed short story collections are included if some are
        Marple, often have horror, supernatural, maybe detective Poirot, Pyne,
        or Quin. Note that "Nemesis" should be read AFTER "A Caribbean Holiday"
  - source_sentence: >-
      A recording of folk songs done for the Columbia society in 1942 was
      largely arranged by Pjetër Dungu .
    sentences:
      - Someone cooking drugs in a spoon over a candle
      - >-
        A recording of folk songs made for the Columbia society in 1942 was
        largely arranged by Pjetër Dungu .
      - >-
        A Murder of Crows, A Parliament of Owls What do You Call a Group of
        Birds? Do you know what a group of Ravens is called? What about a group
        of peacocks, snipe or hummingbirds? Here is a list of Bird Collectives,
        terms that you can use to describe a    group of birds. Birds in general
  - source_sentence: A person in a kitchen looking at the oven.
    sentences:
      - >-
        staying warm has a positive impact on an animal 's survival. Furry
        animals grow thicker coats to keep warm in the winter. 
         Furry animals grow thicker coats which has a positive impact on their survival. 
      - A woman In the kitchen opening her oven.
      - >-
        EE has apologised after a fault left some of its customers unable to use
        the internet on their mobile devices.
  - source_sentence: Air can be separated into several elements.
    sentences:
      - >-
        Which of the following substances can be separated into several
        elements?
      - >-
        Funny Interesting Facts Humor Strange: Carl and the Passions changed
        band name to what Carl and the Passions changed band name to what Beach
        Boys Carl and the Passions - "So Tough" is the fifteenth studio album
        released by The Beach Boys in 1972. In its initial release, it was the
        second disc of a two-album set with Pet Sounds (which The Beach Boys
        were able to license from Capitol Records). Unfortunately, due to the
        fact that Carl and the Passions - "So Tough" was a transitional album
        that saw the departure of one member and the introduction of two new
        ones, making it wildly inconsistent in terms of type of material
        present, it paled next to their 1966 classic and was seen as something
        of a disappointment in its time of release. The title of the album
        itself was a reference to an early band Carl Wilson had been in as a
        teenager (some say a possible early name for the Beach Boys). It was
        also the first album released under a new deal with Warner Bros. that
        allowed the company to distribute all future Beach Boys product in
        foreign as well as domestic markets.
      - >-
        Which statement correctly describes a relationship between two human
        body systems?
  - source_sentence: What do outdoor plants require to survive?
    sentences:
      - >-
        a plants require water for survival. If no rain or watering, the plant
        dies. 
         Outdoor plants require rain to survive.
      - >-
        (Vegan) soups are nutritious. In addition to them being easy to digest,
        most the time, soups are made from nutrient-dense ingredients like
        herbs, spices, vegetables, and beans. Because the soup is full of those
        nutrients AND that it's easy to digest, your body is able to absorb more
        of those nutrients into your system.
      - >-
        If you do the math, there are 11,238,513 possible combinations of five
        white balls (without order mattering). Multiply that by the 26 possible
        red balls, and you get 292,201,338 possible Powerball number
        combinations. At $2 per ticket, you'd need $584,402,676 to buy every
        single combination and guarantee a win.
model-index:
  - name: SentenceTransformer based on microsoft/deberta-v3-small
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.41074334497722165
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.4583378890486231
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.44332181906543383
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.4653892556459323
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.4333967868726292
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.458448737920612
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.407552380755139
            name: Pearson Dot
          - type: spearman_dot
            value: 0.4553192375302001
            name: Spearman Dot
          - type: pearson_max
            value: 0.44332181906543383
            name: Pearson Max
          - type: spearman_max
            value: 0.4653892556459323
            name: Spearman Max
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: allNLI dev
          type: allNLI-dev
        metrics:
          - type: cosine_accuracy
            value: 0.677734375
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.9697319269180298
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.5189003436426117
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.8454164862632751
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.3691931540342298
            name: Cosine Precision
          - type: cosine_recall
            value: 0.8728323699421965
            name: Cosine Recall
          - type: cosine_ap
            value: 0.47097839371304523
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.677734375
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 737.8129272460938
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.5189003436426117
            name: Dot F1
          - type: dot_f1_threshold
            value: 647.1653442382812
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.3691931540342298
            name: Dot Precision
          - type: dot_recall
            value: 0.8728323699421965
            name: Dot Recall
          - type: dot_ap
            value: 0.4710099600965258
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.677734375
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 182.8551788330078
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.5330296127562643
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 261.1466979980469
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.4398496240601504
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.6763005780346821
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.4685839203620036
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.677734375
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 6.808244228363037
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.5189003436426117
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 15.383974075317383
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.3691931540342298
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.8728323699421965
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.47125375440506867
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.677734375
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 737.8129272460938
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.5330296127562643
            name: Max F1
          - type: max_f1_threshold
            value: 647.1653442382812
            name: Max F1 Threshold
          - type: max_precision
            value: 0.4398496240601504
            name: Max Precision
          - type: max_recall
            value: 0.8728323699421965
            name: Max Recall
          - type: max_ap
            value: 0.47125375440506867
            name: Max Ap
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: Qnli dev
          type: Qnli-dev
        metrics:
          - type: cosine_accuracy
            value: 0.650390625
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.8711802363395691
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.6573208722741433
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.779100775718689
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.5197044334975369
            name: Cosine Precision
          - type: cosine_recall
            value: 0.8940677966101694
            name: Cosine Recall
          - type: cosine_ap
            value: 0.6636184479177414
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.650390625
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 664.5684814453125
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.6568047337278107
            name: Dot F1
          - type: dot_f1_threshold
            value: 582.806396484375
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.5045454545454545
            name: Dot Precision
          - type: dot_recall
            value: 0.940677966101695
            name: Dot Recall
          - type: dot_ap
            value: 0.6615631968512774
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.65625
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 303.57794189453125
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.6689655172413793
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 349.1427001953125
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.563953488372093
            name: Manhattan Precision
          - type: manhattan_recall
            value: 0.8220338983050848
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.6740758222672537
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.650390625
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 14.019062995910645
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.6573208722741433
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 18.369121551513672
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.5197044334975369
            name: Euclidean Precision
          - type: euclidean_recall
            value: 0.8940677966101694
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.663466792452131
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.65625
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 664.5684814453125
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.6689655172413793
            name: Max F1
          - type: max_f1_threshold
            value: 582.806396484375
            name: Max F1 Threshold
          - type: max_precision
            value: 0.563953488372093
            name: Max Precision
          - type: max_recall
            value: 0.940677966101695
            name: Max Recall
          - type: max_ap
            value: 0.6740758222672537
            name: Max Ap

SentenceTransformer based on microsoft/deberta-v3-small

This is a sentence-transformers model finetuned from microsoft/deberta-v3-small. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/deberta-v3-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): AdvancedWeightedPooling(
    (alpha_dropout_layer): Dropout(p=0.01, inplace=False)
    (gate_dropout_layer): Dropout(p=0.05, inplace=False)
    (linear_cls_pj): Linear(in_features=768, out_features=768, bias=True)
    (linear_cls_Qpj): Linear(in_features=768, out_features=768, bias=True)
    (linear_mean_pj): Linear(in_features=768, out_features=768, bias=True)
    (linear_attnOut): Linear(in_features=768, out_features=768, bias=True)
    (mha): MultiheadAttention(
      (out_proj): NonDynamicallyQuantizableLinear(in_features=768, out_features=768, bias=True)
    )
    (layernorm_output): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (layernorm_weightedPooing): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (layernorm_pjCls): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (layernorm_pjMean): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (layernorm_attnOut): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTa3-s-CustomPoolin-toytest2-step1-checkpoints-tmp")
# Run inference
sentences = [
    'What do outdoor plants require to survive?',
    'a plants require water for survival. If no rain or watering, the plant dies. \n Outdoor plants require rain to survive.',
    "(Vegan) soups are nutritious. In addition to them being easy to digest, most the time, soups are made from nutrient-dense ingredients like herbs, spices, vegetables, and beans. Because the soup is full of those nutrients AND that it's easy to digest, your body is able to absorb more of those nutrients into your system.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.4107
spearman_cosine 0.4583
pearson_manhattan 0.4433
spearman_manhattan 0.4654
pearson_euclidean 0.4334
spearman_euclidean 0.4584
pearson_dot 0.4076
spearman_dot 0.4553
pearson_max 0.4433
spearman_max 0.4654

Binary Classification

Metric Value
cosine_accuracy 0.6777
cosine_accuracy_threshold 0.9697
cosine_f1 0.5189
cosine_f1_threshold 0.8454
cosine_precision 0.3692
cosine_recall 0.8728
cosine_ap 0.471
dot_accuracy 0.6777
dot_accuracy_threshold 737.8129
dot_f1 0.5189
dot_f1_threshold 647.1653
dot_precision 0.3692
dot_recall 0.8728
dot_ap 0.471
manhattan_accuracy 0.6777
manhattan_accuracy_threshold 182.8552
manhattan_f1 0.533
manhattan_f1_threshold 261.1467
manhattan_precision 0.4398
manhattan_recall 0.6763
manhattan_ap 0.4686
euclidean_accuracy 0.6777
euclidean_accuracy_threshold 6.8082
euclidean_f1 0.5189
euclidean_f1_threshold 15.384
euclidean_precision 0.3692
euclidean_recall 0.8728
euclidean_ap 0.4713
max_accuracy 0.6777
max_accuracy_threshold 737.8129
max_f1 0.533
max_f1_threshold 647.1653
max_precision 0.4398
max_recall 0.8728
max_ap 0.4713

Binary Classification

Metric Value
cosine_accuracy 0.6504
cosine_accuracy_threshold 0.8712
cosine_f1 0.6573
cosine_f1_threshold 0.7791
cosine_precision 0.5197
cosine_recall 0.8941
cosine_ap 0.6636
dot_accuracy 0.6504
dot_accuracy_threshold 664.5685
dot_f1 0.6568
dot_f1_threshold 582.8064
dot_precision 0.5045
dot_recall 0.9407
dot_ap 0.6616
manhattan_accuracy 0.6562
manhattan_accuracy_threshold 303.5779
manhattan_f1 0.669
manhattan_f1_threshold 349.1427
manhattan_precision 0.564
manhattan_recall 0.822
manhattan_ap 0.6741
euclidean_accuracy 0.6504
euclidean_accuracy_threshold 14.0191
euclidean_f1 0.6573
euclidean_f1_threshold 18.3691
euclidean_precision 0.5197
euclidean_recall 0.8941
euclidean_ap 0.6635
max_accuracy 0.6562
max_accuracy_threshold 664.5685
max_f1 0.669
max_f1_threshold 582.8064
max_precision 0.564
max_recall 0.9407
max_ap 0.6741

Training Details

Training Dataset

Unnamed Dataset

  • Size: 32,500 training samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2
    type string string
    details
    • min: 4 tokens
    • mean: 29.43 tokens
    • max: 400 tokens
    • min: 2 tokens
    • mean: 57.02 tokens
    • max: 389 tokens
  • Samples:
    sentence1 sentence2
    What is the chemical symbol for Silver? Chemical Elements.com - Silver (Ag) Bentor, Yinon. Chemical Element.com - Silver. http://www.chemicalelements.com/elements/ag.html. For more information about citing online sources, please visit the MLA's Website . This page was created by Yinon Bentor. Use of this web site is restricted by this site's license agreement . Copyright © 1996-2012 Yinon Bentor. All Rights Reserved.
    e. in solids the atoms are closely locked in position and can only vibrate, in liquids the atoms and molecules are more loosely connected and can collide with and move past one another, while in gases the atoms or molecules are free to move independently, colliding frequently. Within a substance, atoms that collide frequently and move independently of one another are most likely in a gas
    Keanu Neal was born in 1995 . Keanu Neal ( born July 26 , 1995 ) is an American football safety for the Atlanta Falcons of the National Football League ( NFL ) .
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.025}
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,664 evaluation samples
  • Columns: sentence1 and sentence2
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2
    type string string
    details
    • min: 4 tokens
    • mean: 28.9 tokens
    • max: 348 tokens
    • min: 2 tokens
    • mean: 57.31 tokens
    • max: 450 tokens
  • Samples:
    sentence1 sentence2
    Gene expression is regulated primarily at the what level? Gene expression is regulated primarily at the transcriptional level.
    Diffusion Diffusion is a process where atoms or molecules move from areas of high concentration to areas of low concentration. Diffusion is the process in which a substance naturally moves from an area of higher to lower concentration.
    In which James Bond film did Sean Connery wear the Bell Rocket Belt (Jet Pack)? Jet Pack - James Bond Gadgets 125lbs Summary James Bond used the Jetpack in 1965's Thunderball, to escape from gunmen after killing a SPECTRE agent. The Jetpack In the 1965 movie Thunderball, James Bond (Sean Connery) uses Q's Jetpack to escape from two gunmen after killing Jacques Bouvar, SPECTRE Agent No. 6. It was also used in the Thunderball movie posters, being the "Look Up" part of the "Look Up! Look Down! Look Out!" tagline. The Jetpack returned in the 2002 movie Die Another Day, in the Q scene that showcased many other classic gadgets. The Jetpack is a very popular Bond gadget and is a favorite among many fans due to its originality and uniqueness. The Bell Rocket Belt The Jetpack is actually a Bell Rocket Belt, a fully functional rocket pack device. It was designed for use in the army, but was rejected because of its short flying time of 21-22 seconds. Powered by hydrogen peroxide, it could fly about 250m and reach a maximum altitude of 18m, going 55km/h. Despite its impracticality in the real world, the Jetpack made a spectacular debut in Thunderball. Although Sean Connery is seen in the takeoff and landings, the main flight was piloted by Gordon Yeager and Bill Suitor.
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.025}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 256
  • lr_scheduler_type: cosine_with_min_lr
  • lr_scheduler_kwargs: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
  • warmup_ratio: 0.33
  • save_safetensors: False
  • fp16: True
  • push_to_hub: True
  • hub_model_id: bobox/DeBERTa3-s-CustomPoolin-toytest2-step1-checkpoints-tmp
  • hub_strategy: all_checkpoints
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine_with_min_lr
  • lr_scheduler_kwargs: {'num_cycles': 0.5, 'min_lr': 3.3333333333333337e-06}
  • warmup_ratio: 0.33
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: False
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: bobox/DeBERTa3-s-CustomPoolin-toytest2-step1-checkpoints-tmp
  • hub_strategy: all_checkpoints
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss sts-test_spearman_cosine allNLI-dev_max_ap Qnli-dev_max_ap
0.0010 1 18.7427 - - - -
0.0020 2 11.6434 - - - -
0.0030 3 7.4859 - - - -
0.0039 4 7.3779 - - - -
0.0049 5 17.5878 - - - -
0.0059 6 8.4984 - - - -
0.0069 7 8.375 - - - -
0.0079 8 7.3241 - - - -
0.0089 9 10.3081 - - - -
0.0098 10 8.5363 - - - -
0.0108 11 17.2241 - - - -
0.0118 12 7.575 - - - -
0.0128 13 9.1905 - - - -
0.0138 14 11.7727 - - - -
0.0148 15 9.5827 - - - -
0.0157 16 7.4432 - - - -
0.0167 17 7.1573 - - - -
0.0177 18 19.8016 - - - -
0.0187 19 19.5118 - - - -
0.0197 20 7.9062 - - - -
0.0207 21 8.6791 - - - -
0.0217 22 7.7318 - - - -
0.0226 23 7.9319 - - - -
0.0236 24 7.192 - - - -
0.0246 25 15.5799 - - - -
0.0256 26 9.7859 - - - -
0.0266 27 9.9259 - - - -
0.0276 28 6.3076 - - - -
0.0285 29 7.4471 - - - -
0.0295 30 7.1246 - - - -
0.0305 31 6.5505 - - - -
0.0315 32 18.5194 - - - -
0.0325 33 7.0747 - - - -
0.0335 34 14.9456 - - - -
0.0344 35 6.608 - - - -
0.0354 36 8.4672 - - - -
0.0364 37 6.8853 - - - -
0.0374 38 13.6063 - - - -
0.0384 39 7.2625 - - - -
0.0394 40 6.2234 - - - -
0.0404 41 14.9675 - - - -
0.0413 42 6.6038 - - - -
0.0423 43 13.1173 - - - -
0.0433 44 16.6992 - - - -
0.0443 45 6.4828 - - - -
0.0453 46 5.9815 - - - -
0.0463 47 6.1738 - - - -
0.0472 48 7.134 - - - -
0.0482 49 9.3933 - - - -
0.0492 50 10.8085 - - - -
0.0502 51 11.4172 - - - -
0.0512 52 7.3397 - - - -
0.0522 53 5.8851 - - - -
0.0531 54 6.8105 - - - -
0.0541 55 5.3637 - - - -
0.0551 56 6.2628 - - - -
0.0561 57 6.0039 - - - -
0.0571 58 7.5859 - - - -
0.0581 59 6.0802 - - - -
0.0591 60 5.5822 - - - -
0.0600 61 5.8773 - - - -
0.0610 62 6.0814 - - - -
0.0620 63 5.4483 - - - -
0.0630 64 10.2506 - - - -
0.0640 65 10.5976 - - - -
0.0650 66 6.9942 - - - -
0.0659 67 5.4813 - - - -
0.0669 68 7.045 - - - -
0.0679 69 5.8549 - - - -
0.0689 70 8.8514 - - - -
0.0699 71 5.2557 - - - -
0.0709 72 5.1181 - - - -
0.0719 73 5.5331 - - - -
0.0728 74 5.5944 - - - -
0.0738 75 4.6332 - - - -
0.0748 76 4.9532 - - - -
0.0758 77 5.055 - - - -
0.0768 78 4.5005 - - - -
0.0778 79 5.1997 - - - -
0.0787 80 5.1479 - - - -
0.0797 81 5.1777 - - - -
0.0807 82 5.5565 - - - -
0.0817 83 4.6999 - - - -
0.0827 84 5.0681 - - - -
0.0837 85 5.2208 - - - -
0.0846 86 4.56 - - - -
0.0856 87 4.6793 - - - -
0.0866 88 4.4611 - - - -
0.0876 89 9.623 - - - -
0.0886 90 5.0316 - - - -
0.0896 91 4.1771 - - - -
0.0906 92 4.9652 - - - -
0.0915 93 8.7432 - - - -
0.0925 94 4.6234 - - - -
0.0935 95 4.4016 - - - -
0.0945 96 4.9903 - - - -
0.0955 97 4.5606 - - - -
0.0965 98 4.9534 - - - -
0.0974 99 8.1838 - - - -
0.0984 100 4.9736 - - - -
0.0994 101 4.4733 - - - -
0.1004 102 4.9725 - - - -
0.1014 103 4.5861 - - - -
0.1024 104 7.7634 - - - -
0.1033 105 4.9915 - - - -
0.1043 106 5.1391 - - - -
0.1053 107 5.0157 - - - -
0.1063 108 4.0982 - - - -
0.1073 109 4.2178 - - - -
0.1083 110 4.6193 - - - -
0.1093 111 4.7638 - - - -
0.1102 112 4.1207 - - - -
0.1112 113 5.2034 - - - -
0.1122 114 5.0693 - - - -
0.1132 115 4.7895 - - - -
0.1142 116 4.9486 - - - -
0.1152 117 4.6552 - - - -
0.1161 118 4.4555 - - - -
0.1171 119 4.8977 - - - -
0.1181 120 7.6836 - - - -
0.1191 121 4.8106 - - - -
0.1201 122 4.9958 - - - -
0.1211 123 4.4585 - - - -
0.1220 124 7.5559 - - - -
0.1230 125 4.2636 - - - -
0.1240 126 4.0436 - - - -
0.125 127 4.7416 - - - -
0.1260 128 4.2215 - - - -
0.1270 129 6.3561 - - - -
0.1280 130 6.2299 - - - -
0.1289 131 4.3492 - - - -
0.1299 132 4.0216 - - - -
0.1309 133 6.963 - - - -
0.1319 134 3.9474 - - - -
0.1329 135 4.3437 - - - -
0.1339 136 3.6267 - - - -
0.1348 137 3.9896 - - - -
0.1358 138 4.8156 - - - -
0.1368 139 4.9751 - - - -
0.1378 140 4.4144 - - - -
0.1388 141 4.7213 - - - -
0.1398 142 6.6081 - - - -
0.1407 143 4.2929 - - - -
0.1417 144 4.2537 - - - -
0.1427 145 4.0647 - - - -
0.1437 146 3.937 - - - -
0.1447 147 5.6582 - - - -
0.1457 148 4.2648 - - - -
0.1467 149 4.4429 - - - -
0.1476 150 3.6197 - - - -
0.1486 151 3.7953 - - - -
0.1496 152 3.8175 - - - -
0.1506 153 4.5137 3.3210 0.1806 0.3919 0.5750
0.1516 154 4.3528 - - - -
0.1526 155 3.6573 - - - -
0.1535 156 3.5248 - - - -
0.1545 157 3.9275 - - - -
0.1555 158 7.1868 - - - -
0.1565 159 3.6294 - - - -
0.1575 160 3.6886 - - - -
0.1585 161 3.1873 - - - -
0.1594 162 6.1951 - - - -
0.1604 163 3.9747 - - - -
0.1614 164 7.004 - - - -
0.1624 165 4.3221 - - - -
0.1634 166 3.5963 - - - -
0.1644 167 3.1988 - - - -
0.1654 168 3.8236 - - - -
0.1663 169 3.5063 - - - -
0.1673 170 5.9843 - - - -
0.1683 171 5.884 - - - -
0.1693 172 4.1317 - - - -
0.1703 173 3.9255 - - - -
0.1713 174 4.1121 - - - -
0.1722 175 3.7748 - - - -
0.1732 176 5.1602 - - - -
0.1742 177 4.8807 - - - -
0.1752 178 3.4643 - - - -
0.1762 179 3.4937 - - - -
0.1772 180 5.2731 - - - -
0.1781 181 4.6416 - - - -
0.1791 182 3.5226 - - - -
0.1801 183 4.7794 - - - -
0.1811 184 3.8504 - - - -
0.1821 185 3.5391 - - - -
0.1831 186 4.0291 - - - -
0.1841 187 3.5606 - - - -
0.1850 188 3.8957 - - - -
0.1860 189 4.3657 - - - -
0.1870 190 5.0173 - - - -
0.1880 191 4.3915 - - - -
0.1890 192 3.4613 - - - -
0.1900 193 3.2005 - - - -
0.1909 194 3.3986 - - - -
0.1919 195 3.7937 - - - -
0.1929 196 3.8981 - - - -
0.1939 197 3.7051 - - - -
0.1949 198 3.8028 - - - -
0.1959 199 3.3294 - - - -
0.1969 200 4.1252 - - - -
0.1978 201 4.2564 - - - -
0.1988 202 3.8258 - - - -
0.1998 203 3.1025 - - - -
0.2008 204 3.5038 - - - -
0.2018 205 3.6021 - - - -
0.2028 206 3.7637 - - - -
0.2037 207 3.2563 - - - -
0.2047 208 3.9323 - - - -
0.2057 209 3.489 - - - -
0.2067 210 3.6549 - - - -
0.2077 211 3.1609 - - - -
0.2087 212 3.2467 - - - -
0.2096 213 3.4514 - - - -
0.2106 214 3.4945 - - - -
0.2116 215 3.5932 - - - -
0.2126 216 3.2289 - - - -
0.2136 217 3.3279 - - - -
0.2146 218 3.8141 - - - -
0.2156 219 3.1171 - - - -
0.2165 220 3.6287 - - - -
0.2175 221 3.8517 - - - -
0.2185 222 3.3836 - - - -
0.2195 223 3.425 - - - -
0.2205 224 3.6246 - - - -
0.2215 225 3.5682 - - - -
0.2224 226 3.3034 - - - -
0.2234 227 3.9251 - - - -
0.2244 228 3.146 - - - -
0.2254 229 3.8859 - - - -
0.2264 230 3.2977 - - - -
0.2274 231 3.2664 - - - -
0.2283 232 3.1275 - - - -
0.2293 233 3.2408 - - - -
0.2303 234 2.907 - - - -
0.2313 235 2.9178 - - - -
0.2323 236 3.324 - - - -
0.2333 237 2.9172 - - - -
0.2343 238 3.4324 - - - -
0.2352 239 4.0563 - - - -
0.2362 240 2.8736 - - - -
0.2372 241 4.7174 - - - -
0.2382 242 3.2025 - - - -
0.2392 243 2.7835 - - - -
0.2402 244 4.3158 - - - -
0.2411 245 2.8619 - - - -
0.2421 246 2.5156 - - - -
0.2431 247 3.2144 - - - -
0.2441 248 3.5927 - - - -
0.2451 249 2.6059 - - - -
0.2461 250 2.9758 - - - -
0.2470 251 3.9214 - - - -
0.2480 252 3.2892 - - - -
0.2490 253 2.9503 - - - -
0.25 254 2.5969 - - - -
0.2510 255 2.9908 - - - -
0.2520 256 2.8995 - - - -
0.2530 257 3.124 - - - -
0.2539 258 3.1197 - - - -
0.2549 259 2.3073 - - - -
0.2559 260 2.8441 - - - -
0.2569 261 1.9788 - - - -
0.2579 262 2.1442 - - - -
0.2589 263 4.9015 - - - -
0.2598 264 2.7866 - - - -
0.2608 265 2.4588 - - - -
0.2618 266 2.3909 - - - -
0.2628 267 4.7394 - - - -
0.2638 268 3.1581 - - - -
0.2648 269 3.973 - - - -
0.2657 270 4.1565 - - - -
0.2667 271 2.5183 - - - -
0.2677 272 3.614 - - - -
0.2687 273 2.6858 - - - -
0.2697 274 3.1182 - - - -
0.2707 275 2.9628 - - - -
0.2717 276 2.8376 - - - -
0.2726 277 2.7858 - - - -
0.2736 278 2.1037 - - - -
0.2746 279 3.0436 - - - -
0.2756 280 3.4125 - - - -
0.2766 281 2.5027 - - - -
0.2776 282 2.7922 - - - -
0.2785 283 2.9762 - - - -
0.2795 284 2.6458 - - - -
0.2805 285 2.962 - - - -
0.2815 286 2.5439 - - - -
0.2825 287 2.8437 - - - -
0.2835 288 3.2134 - - - -
0.2844 289 2.5655 - - - -
0.2854 290 2.9465 - - - -
0.2864 291 2.4653 - - - -
0.2874 292 3.1467 - - - -
0.2884 293 2.6551 - - - -
0.2894 294 2.5098 - - - -
0.2904 295 2.5988 - - - -
0.2913 296 3.778 - - - -
0.2923 297 2.6257 - - - -
0.2933 298 2.5142 - - - -
0.2943 299 2.3182 - - - -
0.2953 300 3.3505 - - - -
0.2963 301 2.9615 - - - -
0.2972 302 2.9136 - - - -
0.2982 303 2.6192 - - - -
0.2992 304 2.3255 - - - -
0.3002 305 2.7168 - - - -
0.3012 306 2.9137 2.4280 0.2507 0.4103 0.5948
0.3022 307 2.6681 - - - -
0.3031 308 2.7219 - - - -
0.3041 309 2.4057 - - - -
0.3051 310 2.7402 - - - -
0.3061 311 2.5512 - - - -
0.3071 312 2.8553 - - - -
0.3081 313 2.598 - - - -
0.3091 314 2.6186 - - - -
0.3100 315 2.3678 - - - -
0.3110 316 2.886 - - - -
0.3120 317 2.1738 - - - -
0.3130 318 2.6619 - - - -
0.3140 319 2.1818 - - - -
0.3150 320 3.0407 - - - -
0.3159 321 2.464 - - - -
0.3169 322 2.7415 - - - -
0.3179 323 2.7455 - - - -
0.3189 324 2.4061 - - - -
0.3199 325 2.0491 - - - -
0.3209 326 3.3097 - - - -
0.3219 327 2.3587 - - - -
0.3228 328 1.9493 - - - -
0.3238 329 2.5399 - - - -
0.3248 330 2.3569 - - - -
0.3258 331 1.9024 - - - -
0.3268 332 2.3513 - - - -
0.3278 333 2.2488 - - - -
0.3287 334 1.9141 - - - -
0.3297 335 2.7065 - - - -
0.3307 336 2.139 - - - -
0.3317 337 2.2345 - - - -
0.3327 338 2.3612 - - - -
0.3337 339 2.1413 - - - -
0.3346 340 2.2214 - - - -
0.3356 341 2.9006 - - - -
0.3366 342 2.417 - - - -
0.3376 343 2.2348 - - - -
0.3386 344 2.4369 - - - -
0.3396 345 2.7623 - - - -
0.3406 346 2.6741 - - - -
0.3415 347 3.0515 - - - -
0.3425 348 2.4952 - - - -
0.3435 349 2.1265 - - - -
0.3445 350 2.0359 - - - -
0.3455 351 3.107 - - - -
0.3465 352 2.116 - - - -
0.3474 353 2.1996 - - - -
0.3484 354 2.9312 - - - -
0.3494 355 2.2885 - - - -
0.3504 356 3.0302 - - - -
0.3514 357 2.2163 - - - -
0.3524 358 2.8304 - - - -
0.3533 359 2.2715 - - - -
0.3543 360 2.3388 - - - -
0.3553 361 2.2098 - - - -
0.3563 362 2.0911 - - - -
0.3573 363 2.3582 - - - -
0.3583 364 1.8605 - - - -
0.3593 365 2.2252 - - - -
0.3602 366 2.2018 - - - -
0.3612 367 2.1099 - - - -
0.3622 368 2.1323 - - - -
0.3632 369 2.4203 - - - -
0.3642 370 2.7768 - - - -
0.3652 371 2.3359 - - - -
0.3661 372 2.3773 - - - -
0.3671 373 2.4424 - - - -
0.3681 374 1.9478 - - - -
0.3691 375 1.6047 - - - -
0.3701 376 1.7384 - - - -
0.3711 377 2.1147 - - - -
0.3720 378 1.8449 - - - -
0.3730 379 2.6009 - - - -
0.3740 380 2.4051 - - - -
0.375 381 2.3035 - - - -
0.3760 382 1.8955 - - - -
0.3770 383 2.287 - - - -
0.3780 384 1.9123 - - - -
0.3789 385 1.9369 - - - -
0.3799 386 2.1367 - - - -
0.3809 387 1.9437 - - - -
0.3819 388 2.3873 - - - -
0.3829 389 1.7463 - - - -
0.3839 390 2.8438 - - - -
0.3848 391 2.4875 - - - -
0.3858 392 2.0798 - - - -
0.3868 393 2.2242 - - - -
0.3878 394 1.8714 - - - -
0.3888 395 1.5893 - - - -
0.3898 396 1.5633 - - - -
0.3907 397 1.8645 - - - -
0.3917 398 1.8928 - - - -
0.3927 399 1.3352 - - - -
0.3937 400 3.3052 - - - -
0.3947 401 1.6256 - - - -
0.3957 402 1.8856 - - - -
0.3967 403 1.8355 - - - -
0.3976 404 1.8944 - - - -
0.3986 405 1.7636 - - - -
0.3996 406 2.8097 - - - -
0.4006 407 1.9121 - - - -
0.4016 408 1.9233 - - - -
0.4026 409 1.543 - - - -
0.4035 410 1.7207 - - - -
0.4045 411 1.6344 - - - -
0.4055 412 2.4177 - - - -
0.4065 413 2.2995 - - - -
0.4075 414 1.7681 - - - -
0.4085 415 1.6562 - - - -
0.4094 416 1.8896 - - - -
0.4104 417 2.0671 - - - -
0.4114 418 1.6097 - - - -
0.4124 419 2.8126 - - - -
0.4134 420 1.7028 - - - -
0.4144 421 1.526 - - - -
0.4154 422 2.5029 - - - -
0.4163 423 1.7668 - - - -
0.4173 424 1.9065 - - - -
0.4183 425 1.6645 - - - -
0.4193 426 1.8075 - - - -
0.4203 427 1.872 - - - -
0.4213 428 2.0487 - - - -
0.4222 429 1.535 - - - -
0.4232 430 1.8046 - - - -
0.4242 431 2.2561 - - - -
0.4252 432 2.0306 - - - -
0.4262 433 2.1311 - - - -
0.4272 434 2.3013 - - - -
0.4281 435 1.6402 - - - -
0.4291 436 1.9572 - - - -
0.4301 437 1.6364 - - - -
0.4311 438 1.446 - - - -
0.4321 439 1.6009 - - - -
0.4331 440 1.9469 - - - -
0.4341 441 2.1951 - - - -
0.4350 442 1.675 - - - -
0.4360 443 1.4182 - - - -
0.4370 444 2.2317 - - - -
0.4380 445 2.1076 - - - -
0.4390 446 1.6691 - - - -
0.4400 447 1.6909 - - - -
0.4409 448 3.1056 - - - -
0.4419 449 1.4069 - - - -
0.4429 450 2.1639 - - - -
0.4439 451 1.5531 - - - -
0.4449 452 2.1895 - - - -
0.4459 453 1.9384 - - - -
0.4469 454 1.7761 - - - -
0.4478 455 2.8286 - - - -
0.4488 456 2.4877 - - - -
0.4498 457 1.7636 - - - -
0.4508 458 1.1849 - - - -
0.4518 459 1.8331 1.9854 0.3261 0.4327 0.6511
0.4528 460 2.0416 - - - -
0.4537 461 2.1907 - - - -
0.4547 462 1.7478 - - - -
0.4557 463 1.9 - - - -
0.4567 464 1.6876 - - - -
0.4577 465 2.0035 - - - -
0.4587 466 1.4127 - - - -
0.4596 467 1.5593 - - - -
0.4606 468 1.7 - - - -
0.4616 469 1.5157 - - - -
0.4626 470 1.6554 - - - -
0.4636 471 1.7404 - - - -
0.4646 472 2.1432 - - - -
0.4656 473 1.7322 - - - -
0.4665 474 1.7281 - - - -
0.4675 475 1.5107 - - - -
0.4685 476 1.779 - - - -
0.4695 477 1.325 - - - -
0.4705 478 1.073 - - - -
0.4715 479 1.864 - - - -
0.4724 480 2.3645 - - - -
0.4734 481 1.181 - - - -
0.4744 482 1.4562 - - - -
0.4754 483 1.3105 - - - -
0.4764 484 2.8012 - - - -
0.4774 485 2.0114 - - - -
0.4783 486 1.6307 - - - -
0.4793 487 2.7733 - - - -
0.4803 488 1.8211 - - - -
0.4813 489 1.574 - - - -
0.4823 490 1.9713 - - - -
0.4833 491 1.2774 - - - -
0.4843 492 2.58 - - - -
0.4852 493 2.0594 - - - -
0.4862 494 1.5857 - - - -
0.4872 495 2.0028 - - - -
0.4882 496 1.8863 - - - -
0.4892 497 1.5171 - - - -
0.4902 498 1.9355 - - - -
0.4911 499 2.0675 - - - -
0.4921 500 1.6017 - - - -
0.4931 501 1.4089 - - - -
0.4941 502 1.3836 - - - -
0.4951 503 1.6033 - - - -
0.4961 504 1.0891 - - - -
0.4970 505 1.7119 - - - -
0.4980 506 1.3685 - - - -
0.4990 507 1.4252 - - - -
0.5 508 1.5538 - - - -
0.5010 509 1.7513 - - - -
0.5020 510 1.1831 - - - -
0.5030 511 1.7767 - - - -
0.5039 512 1.4324 - - - -
0.5049 513 2.1672 - - - -
0.5059 514 1.6348 - - - -
0.5069 515 1.7285 - - - -
0.5079 516 2.0186 - - - -
0.5089 517 1.382 - - - -
0.5098 518 1.4509 - - - -
0.5108 519 1.1043 - - - -
0.5118 520 1.3322 - - - -
0.5128 521 1.3267 - - - -
0.5138 522 1.3639 - - - -
0.5148 523 1.203 - - - -
0.5157 524 1.8583 - - - -
0.5167 525 2.267 - - - -
0.5177 526 1.2935 - - - -
0.5187 527 1.7431 - - - -
0.5197 528 1.8484 - - - -
0.5207 529 1.5626 - - - -
0.5217 530 2.2645 - - - -
0.5226 531 1.4313 - - - -
0.5236 532 1.8204 - - - -
0.5246 533 1.5659 - - - -
0.5256 534 1.2689 - - - -
0.5266 535 1.8193 - - - -
0.5276 536 2.2902 - - - -
0.5285 537 1.6936 - - - -
0.5295 538 1.7305 - - - -
0.5305 539 1.4449 - - - -
0.5315 540 1.5594 - - - -
0.5325 541 1.9678 - - - -
0.5335 542 2.0327 - - - -
0.5344 543 2.0456 - - - -
0.5354 544 2.0452 - - - -
0.5364 545 1.9435 - - - -
0.5374 546 1.8963 - - - -
0.5384 547 1.9536 - - - -
0.5394 548 1.0665 - - - -
0.5404 549 1.8067 - - - -
0.5413 550 1.6227 - - - -
0.5423 551 1.687 - - - -
0.5433 552 1.5937 - - - -
0.5443 553 0.9216 - - - -
0.5453 554 1.3895 - - - -
0.5463 555 1.7863 - - - -
0.5472 556 1.2574 - - - -
0.5482 557 2.108 - - - -
0.5492 558 1.2782 - - - -
0.5502 559 1.4959 - - - -
0.5512 560 1.9191 - - - -
0.5522 561 2.0049 - - - -
0.5531 562 1.2511 - - - -
0.5541 563 1.3912 - - - -
0.5551 564 1.371 - - - -
0.5561 565 1.6155 - - - -
0.5571 566 1.4625 - - - -
0.5581 567 0.86 - - - -
0.5591 568 1.5753 - - - -
0.5600 569 1.6126 - - - -
0.5610 570 1.3171 - - - -
0.5620 571 1.9378 - - - -
0.5630 572 1.2736 - - - -
0.5640 573 1.2368 - - - -
0.5650 574 1.1005 - - - -
0.5659 575 1.1765 - - - -
0.5669 576 1.3557 - - - -
0.5679 577 1.3224 - - - -
0.5689 578 1.7914 - - - -
0.5699 579 1.0633 - - - -
0.5709 580 1.3624 - - - -
0.5719 581 0.9804 - - - -
0.5728 582 1.8246 - - - -
0.5738 583 1.1806 - - - -
0.5748 584 1.6243 - - - -
0.5758 585 1.739 - - - -
0.5768 586 1.2502 - - - -
0.5778 587 1.6328 - - - -
0.5787 588 1.3618 - - - -
0.5797 589 1.1535 - - - -
0.5807 590 1.2214 - - - -
0.5817 591 1.4884 - - - -
0.5827 592 1.4029 - - - -
0.5837 593 1.0542 - - - -
0.5846 594 1.5848 - - - -
0.5856 595 1.405 - - - -
0.5866 596 1.6281 - - - -
0.5876 597 1.5228 - - - -
0.5886 598 1.8192 - - - -
0.5896 599 1.2403 - - - -
0.5906 600 1.9368 - - - -
0.5915 601 1.6623 - - - -
0.5925 602 1.495 - - - -
0.5935 603 1.7079 - - - -
0.5945 604 1.0651 - - - -
0.5955 605 1.2121 - - - -
0.5965 606 1.5385 - - - -
0.5974 607 1.1015 - - - -
0.5984 608 1.7596 - - - -
0.5994 609 1.5597 - - - -
0.6004 610 1.3254 - - - -
0.6014 611 1.3595 - - - -
0.6024 612 1.0326 1.6315 0.3597 0.4478 0.6598
0.6033 613 1.4822 - - - -
0.6043 614 0.9997 - - - -
0.6053 615 1.4946 - - - -
0.6063 616 1.3491 - - - -
0.6073 617 1.2118 - - - -
0.6083 618 1.6948 - - - -
0.6093 619 2.0457 - - - -
0.6102 620 1.2724 - - - -
0.6112 621 1.2677 - - - -
0.6122 622 1.6639 - - - -
0.6132 623 1.139 - - - -
0.6142 624 1.2424 - - - -
0.6152 625 0.8214 - - - -
0.6161 626 1.4398 - - - -
0.6171 627 1.6008 - - - -
0.6181 628 1.3225 - - - -
0.6191 629 1.4452 - - - -
0.6201 630 1.7723 - - - -
0.6211 631 1.035 - - - -
0.6220 632 1.6132 - - - -
0.6230 633 1.4167 - - - -
0.6240 634 1.1764 - - - -
0.625 635 1.0702 - - - -
0.6260 636 1.3096 - - - -
0.6270 637 1.4174 - - - -
0.6280 638 1.8742 - - - -
0.6289 639 1.3372 - - - -
0.6299 640 1.4453 - - - -
0.6309 641 0.6792 - - - -
0.6319 642 1.2363 - - - -
0.6329 643 1.2037 - - - -
0.6339 644 1.105 - - - -
0.6348 645 1.8319 - - - -
0.6358 646 1.4261 - - - -
0.6368 647 1.0431 - - - -
0.6378 648 1.2132 - - - -
0.6388 649 1.1464 - - - -
0.6398 650 1.3076 - - - -
0.6407 651 0.9162 - - - -
0.6417 652 1.6739 - - - -
0.6427 653 1.3627 - - - -
0.6437 654 1.084 - - - -
0.6447 655 0.8349 - - - -
0.6457 656 1.5575 - - - -
0.6467 657 0.7503 - - - -
0.6476 658 1.5593 - - - -
0.6486 659 1.1788 - - - -
0.6496 660 1.5119 - - - -
0.6506 661 1.1793 - - - -
0.6516 662 1.1577 - - - -
0.6526 663 1.4391 - - - -
0.6535 664 1.2291 - - - -
0.6545 665 1.3118 - - - -
0.6555 666 1.1358 - - - -
0.6565 667 1.814 - - - -
0.6575 668 1.038 - - - -
0.6585 669 1.2344 - - - -
0.6594 670 1.1064 - - - -
0.6604 671 1.8745 - - - -
0.6614 672 1.8775 - - - -
0.6624 673 1.2582 - - - -
0.6634 674 1.3454 - - - -
0.6644 675 1.2374 - - - -
0.6654 676 0.7227 - - - -
0.6663 677 1.2036 - - - -
0.6673 678 1.5248 - - - -
0.6683 679 1.0584 - - - -
0.6693 680 0.7455 - - - -
0.6703 681 1.0616 - - - -
0.6713 682 1.1377 - - - -
0.6722 683 1.7022 - - - -
0.6732 684 1.4008 - - - -
0.6742 685 1.4894 - - - -
0.6752 686 1.5464 - - - -
0.6762 687 1.5018 - - - -
0.6772 688 1.5803 - - - -
0.6781 689 1.5654 - - - -
0.6791 690 1.2537 - - - -
0.6801 691 1.4901 - - - -
0.6811 692 0.9597 - - - -
0.6821 693 1.5515 - - - -
0.6831 694 1.1314 - - - -
0.6841 695 1.2442 - - - -
0.6850 696 1.5542 - - - -
0.6860 697 0.7617 - - - -
0.6870 698 1.4626 - - - -
0.6880 699 0.6546 - - - -
0.6890 700 1.1726 - - - -
0.6900 701 0.7522 - - - -
0.6909 702 1.6203 - - - -
0.6919 703 1.0822 - - - -
0.6929 704 0.9652 - - - -
0.6939 705 0.9884 - - - -
0.6949 706 1.3876 - - - -
0.6959 707 1.1726 - - - -
0.6969 708 1.1426 - - - -
0.6978 709 1.2303 - - - -
0.6988 710 1.3438 - - - -
0.6998 711 1.3823 - - - -
0.7008 712 1.5166 - - - -
0.7018 713 1.4148 - - - -
0.7028 714 0.9564 - - - -
0.7037 715 1.1031 - - - -
0.7047 716 1.6628 - - - -
0.7057 717 1.3693 - - - -
0.7067 718 1.0247 - - - -
0.7077 719 0.7778 - - - -
0.7087 720 1.3158 - - - -
0.7096 721 1.5329 - - - -
0.7106 722 1.2845 - - - -
0.7116 723 0.7895 - - - -
0.7126 724 0.9098 - - - -
0.7136 725 0.7648 - - - -
0.7146 726 1.0951 - - - -
0.7156 727 1.1351 - - - -
0.7165 728 1.0514 - - - -
0.7175 729 1.2328 - - - -
0.7185 730 1.0664 - - - -
0.7195 731 1.1058 - - - -
0.7205 732 0.6698 - - - -
0.7215 733 1.1438 - - - -
0.7224 734 1.0473 - - - -
0.7234 735 1.5307 - - - -
0.7244 736 1.2537 - - - -
0.7254 737 0.7006 - - - -
0.7264 738 0.8487 - - - -
0.7274 739 1.193 - - - -
0.7283 740 0.9711 - - - -
0.7293 741 0.5139 - - - -
0.7303 742 1.1185 - - - -
0.7313 743 0.9982 - - - -
0.7323 744 0.7987 - - - -
0.7333 745 1.161 - - - -
0.7343 746 0.9832 - - - -
0.7352 747 1.6041 - - - -
0.7362 748 1.1084 - - - -
0.7372 749 1.1264 - - - -
0.7382 750 0.6759 - - - -
0.7392 751 1.5241 - - - -
0.7402 752 1.6181 - - - -
0.7411 753 1.1862 - - - -
0.7421 754 1.0147 - - - -
0.7431 755 1.0435 - - - -
0.7441 756 0.9175 - - - -
0.7451 757 1.5608 - - - -
0.7461 758 1.7027 - - - -
0.7470 759 0.9282 - - - -
0.7480 760 0.8072 - - - -
0.7490 761 1.13 - - - -
0.75 762 1.153 - - - -
0.7510 763 1.7723 - - - -
0.7520 764 0.9833 - - - -
0.7530 765 1.1766 1.3821 0.4583 0.4713 0.6741
0.7539 766 1.2351 - - - -
0.7549 767 0.9521 - - - -
0.7559 768 1.1981 - - - -
0.7569 769 0.8031 - - - -
0.7579 770 1.2502 - - - -
0.7589 771 0.9313 - - - -
0.7598 772 0.8738 - - - -
0.7608 773 1.0316 - - - -
0.7618 774 1.0679 - - - -
0.7628 775 1.0308 - - - -
0.7638 776 1.0663 - - - -
0.7648 777 1.3565 - - - -
0.7657 778 0.9103 - - - -
0.7667 779 1.477 - - - -
0.7677 780 1.2526 - - - -
0.7687 781 0.8647 - - - -
0.7697 782 0.8498 - - - -
0.7707 783 1.5257 - - - -
0.7717 784 0.5493 - - - -
0.7726 785 1.2321 - - - -
0.7736 786 1.4306 - - - -
0.7746 787 1.0428 - - - -
0.7756 788 1.3553 - - - -
0.7766 789 1.1102 - - - -
0.7776 790 0.9225 - - - -
0.7785 791 1.2585 - - - -
0.7795 792 1.1335 - - - -
0.7805 793 1.2781 - - - -
0.7815 794 1.0265 - - - -
0.7825 795 1.1846 - - - -
0.7835 796 1.2123 - - - -
0.7844 797 1.0861 - - - -
0.7854 798 1.1929 - - - -
0.7864 799 0.8202 - - - -
0.7874 800 1.0745 - - - -
0.7884 801 0.9162 - - - -
0.7894 802 1.2077 - - - -
0.7904 803 1.432 - - - -
0.7913 804 0.9384 - - - -
0.7923 805 1.4686 - - - -
0.7933 806 0.8565 - - - -
0.7943 807 1.1208 - - - -
0.7953 808 1.006 - - - -
0.7963 809 0.71 - - - -
0.7972 810 1.0219 - - - -
0.7982 811 1.0836 - - - -
0.7992 812 1.1318 - - - -
0.8002 813 1.5411 - - - -
0.8012 814 1.0063 - - - -
0.8022 815 1.277 - - - -
0.8031 816 1.0547 - - - -
0.8041 817 0.7084 - - - -
0.8051 818 1.2581 - - - -
0.8061 819 0.7857 - - - -
0.8071 820 0.7219 - - - -
0.8081 821 1.2658 - - - -
0.8091 822 1.4563 - - - -
0.8100 823 0.9098 - - - -
0.8110 824 0.8606 - - - -
0.8120 825 1.1116 - - - -
0.8130 826 0.952 - - - -
0.8140 827 0.6831 - - - -
0.8150 828 0.8267 - - - -
0.8159 829 0.934 - - - -
0.8169 830 1.7555 - - - -
0.8179 831 1.0109 - - - -
0.8189 832 1.4509 - - - -
0.8199 833 0.6548 - - - -
0.8209 834 0.7777 - - - -
0.8219 835 0.8929 - - - -
0.8228 836 1.282 - - - -
0.8238 837 0.6726 - - - -
0.8248 838 1.0643 - - - -
0.8258 839 1.01 - - - -
0.8268 840 1.0631 - - - -
0.8278 841 1.092 - - - -
0.8287 842 1.0219 - - - -
0.8297 843 1.0437 - - - -
0.8307 844 0.8789 - - - -
0.8317 845 1.5409 - - - -
0.8327 846 1.365 - - - -
0.8337 847 1.0567 - - - -
0.8346 848 0.59 - - - -
0.8356 849 0.839 - - - -
0.8366 850 0.727 - - - -
0.8376 851 0.8681 - - - -
0.8386 852 1.5186 - - - -
0.8396 853 0.8923 - - - -
0.8406 854 0.8248 - - - -
0.8415 855 0.9884 - - - -
0.8425 856 1.257 - - - -
0.8435 857 0.8841 - - - -
0.8445 858 1.232 - - - -
0.8455 859 1.2214 - - - -
0.8465 860 1.3332 - - - -
0.8474 861 0.8272 - - - -
0.8484 862 1.0901 - - - -
0.8494 863 1.2892 - - - -
0.8504 864 0.8817 - - - -
0.8514 865 0.944 - - - -
0.8524 866 0.6212 - - - -
0.8533 867 1.4346 - - - -
0.8543 868 0.7204 - - - -
0.8553 869 1.4009 - - - -
0.8563 870 1.1522 - - - -
0.8573 871 0.9558 - - - -
0.8583 872 0.8871 - - - -
0.8593 873 1.0025 - - - -
0.8602 874 0.8617 - - - -
0.8612 875 1.1982 - - - -
0.8622 876 1.2484 - - - -
0.8632 877 1.0181 - - - -
0.8642 878 0.8535 - - - -
0.8652 879 1.144 - - - -
0.8661 880 1.1927 - - - -
0.8671 881 0.7245 - - - -
0.8681 882 1.0118 - - - -
0.8691 883 1.4399 - - - -
0.8701 884 1.0666 - - - -
0.8711 885 1.1947 - - - -
0.8720 886 0.8908 - - - -
0.8730 887 1.394 - - - -
0.8740 888 0.802 - - - -
0.875 889 0.9879 - - - -
0.8760 890 0.9895 - - - -
0.8770 891 1.0927 - - - -
0.8780 892 1.4376 - - - -
0.8789 893 1.1509 - - - -
0.8799 894 0.7944 - - - -
0.8809 895 1.4574 - - - -
0.8819 896 1.2278 - - - -
0.8829 897 1.1974 - - - -
0.8839 898 1.0711 - - - -
0.8848 899 1.3942 - - - -
0.8858 900 1.1718 - - - -
0.8868 901 1.1274 - - - -
0.8878 902 0.9954 - - - -
0.8888 903 1.0155 - - - -
0.8898 904 1.4032 - - - -
0.8907 905 1.4135 - - - -
0.8917 906 1.1893 - - - -
0.8927 907 0.7243 - - - -
0.8937 908 1.1674 - - - -
0.8947 909 1.3777 - - - -
0.8957 910 1.0281 - - - -
0.8967 911 1.2869 - - - -
0.8976 912 1.0125 - - - -
0.8986 913 1.0047 - - - -
0.8996 914 0.8839 - - - -
0.9006 915 1.4279 - - - -

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 3.0.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

GISTEmbedLoss

@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}