SentenceTransformer based on intfloat/e5-base-unsupervised
This is a sentence-transformers model finetuned from intfloat/e5-base-unsupervised. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/e5-base-unsupervised
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/E5-base-unsupervised-TSDAE-2")
# Run inference
sentences = [
'ligand ion channels located?',
'where are ligand gated ion channels located?',
"Duvets tend to be warm but surprisingly lightweight. The duvet cover makes it easier to change bedding looks and styles. You won't need to wash your duvet very often, just wash the cover regularly. Additionally, duvets tend to be fluffier than comforters, and can simplify bed making if you choose the European style.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7652 |
spearman_cosine | 0.7525 |
pearson_manhattan | 0.7393 |
spearman_manhattan | 0.7326 |
pearson_euclidean | 0.7402 |
spearman_euclidean | 0.7335 |
pearson_dot | 0.5003 |
spearman_dot | 0.4986 |
pearson_max | 0.7652 |
spearman_max | 0.7525 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 700,000 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 15.73 tokens
- max: 55 tokens
- min: 8 tokens
- mean: 36.05 tokens
- max: 131 tokens
- Samples:
sentence_0 sentence_1 Quality such a has components with applicable high objective system measure component improvements
Quality in such a system has three components: high accuracy, compliance with applicable standards, and high customer satisfaction. The objective of the system is to measure each component and achieve improvements.
include
does qbi include capital gains?
They have a . parietal is in, as becomes and pigments after four to is believed and in circadian cycles
They have a third eye. The parietal eye is only visible in hatchlings, as it becomes covered in scales and pigments after four to six months. Its function is a subject of ongoing research, but it is believed to be useful in absorbing ultraviolet rays and in setting circadian and seasonal cycles.
- Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 2multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | sts-test_spearman_cosine |
---|---|---|---|
0 | 0 | - | 0.7211 |
0.0114 | 500 | 9.4957 | - |
0.0229 | 1000 | 7.4063 | - |
0.0343 | 1500 | 7.0225 | - |
0.0457 | 2000 | 6.6991 | - |
0.0571 | 2500 | 6.4054 | - |
0.0686 | 3000 | 6.1933 | - |
0.08 | 3500 | 5.999 | - |
0.0914 | 4000 | 5.8471 | - |
0.1 | 4375 | - | 0.4610 |
0.1029 | 4500 | 5.6876 | - |
0.1143 | 5000 | 5.5934 | - |
0.1257 | 5500 | 5.4877 | - |
0.1371 | 6000 | 5.4034 | - |
0.1486 | 6500 | 5.3016 | - |
0.16 | 7000 | 5.2169 | - |
0.1714 | 7500 | 5.1351 | - |
0.1829 | 8000 | 5.0605 | - |
0.1943 | 8500 | 4.9851 | - |
0.2 | 8750 | - | 0.6490 |
0.2057 | 9000 | 4.9024 | - |
0.2171 | 9500 | 4.8722 | - |
0.2286 | 10000 | 4.7955 | - |
0.24 | 10500 | 4.7435 | - |
0.2514 | 11000 | 4.6742 | - |
0.2629 | 11500 | 4.6447 | - |
0.2743 | 12000 | 4.5964 | - |
0.2857 | 12500 | 4.5186 | - |
0.2971 | 13000 | 4.5024 | - |
0.3 | 13125 | - | 0.7121 |
0.3086 | 13500 | 4.4336 | - |
0.32 | 14000 | 4.3767 | - |
0.3314 | 14500 | 4.3454 | - |
0.3429 | 15000 | 4.3067 | - |
0.3543 | 15500 | 4.2627 | - |
0.3657 | 16000 | 4.2323 | - |
0.3771 | 16500 | 4.208 | - |
0.3886 | 17000 | 4.1622 | - |
0.4 | 17500 | 4.113 | 0.7375 |
0.4114 | 18000 | 4.1097 | - |
0.4229 | 18500 | 4.0666 | - |
0.4343 | 19000 | 4.0311 | - |
0.4457 | 19500 | 4.0241 | - |
0.4571 | 20000 | 3.9991 | - |
0.4686 | 20500 | 3.9873 | - |
0.48 | 21000 | 3.9439 | - |
0.4914 | 21500 | 3.9281 | - |
0.5 | 21875 | - | 0.7502 |
0.5029 | 22000 | 3.9047 | - |
0.5143 | 22500 | 3.89 | - |
0.5257 | 23000 | 3.8671 | - |
0.5371 | 23500 | 3.85 | - |
0.5486 | 24000 | 3.8336 | - |
0.56 | 24500 | 3.8081 | - |
0.5714 | 25000 | 3.8049 | - |
0.5829 | 25500 | 3.7587 | - |
0.5943 | 26000 | 3.769 | - |
0.6 | 26250 | - | 0.7530 |
0.6057 | 26500 | 3.7488 | - |
0.6171 | 27000 | 3.7218 | - |
0.6286 | 27500 | 3.7128 | - |
0.64 | 28000 | 3.7104 | - |
0.6514 | 28500 | 3.6706 | - |
0.6629 | 29000 | 3.6602 | - |
0.6743 | 29500 | 3.658 | - |
0.6857 | 30000 | 3.665 | - |
0.6971 | 30500 | 3.6439 | - |
0.7 | 30625 | - | 0.7561 |
0.7086 | 31000 | 3.6411 | - |
0.72 | 31500 | 3.6141 | - |
0.7314 | 32000 | 3.6172 | - |
0.7429 | 32500 | 3.5975 | - |
0.7543 | 33000 | 3.5827 | - |
0.7657 | 33500 | 3.5836 | - |
0.7771 | 34000 | 3.5484 | - |
0.7886 | 34500 | 3.5275 | - |
0.8 | 35000 | 3.5587 | 0.7553 |
0.8114 | 35500 | 3.5371 | - |
0.8229 | 36000 | 3.5334 | - |
0.8343 | 36500 | 3.5168 | - |
0.8457 | 37000 | 3.483 | - |
0.8571 | 37500 | 3.4755 | - |
0.8686 | 38000 | 3.4943 | - |
0.88 | 38500 | 3.4699 | - |
0.8914 | 39000 | 3.4732 | - |
0.9 | 39375 | - | 0.7560 |
0.9029 | 39500 | 3.4572 | - |
0.9143 | 40000 | 3.4518 | - |
0.9257 | 40500 | 3.4298 | - |
0.9371 | 41000 | 3.4215 | - |
0.9486 | 41500 | 3.4176 | - |
0.96 | 42000 | 3.4353 | - |
0.9714 | 42500 | 3.4137 | - |
0.9829 | 43000 | 3.4037 | - |
0.9943 | 43500 | 3.4157 | - |
1.0 | 43750 | - | 0.7554 |
1.0057 | 44000 | 3.393 | - |
1.0171 | 44500 | 3.4092 | - |
1.0286 | 45000 | 3.3861 | - |
1.04 | 45500 | 3.3976 | - |
1.0514 | 46000 | 3.3769 | - |
1.0629 | 46500 | 3.3444 | - |
1.0743 | 47000 | 3.3598 | - |
1.0857 | 47500 | 3.3556 | - |
1.0971 | 48000 | 3.3548 | - |
1.1 | 48125 | - | 0.7549 |
1.1086 | 48500 | 3.3278 | - |
1.12 | 49000 | 3.3309 | - |
1.1314 | 49500 | 3.3459 | - |
1.1429 | 50000 | 3.3353 | - |
1.1543 | 50500 | 3.3192 | - |
1.1657 | 51000 | 3.3022 | - |
1.1771 | 51500 | 3.3189 | - |
1.1886 | 52000 | 3.301 | - |
1.2 | 52500 | 3.2785 | 0.7542 |
1.2114 | 53000 | 3.2996 | - |
1.2229 | 53500 | 3.2863 | - |
1.2343 | 54000 | 3.2916 | - |
1.2457 | 54500 | 3.272 | - |
1.2571 | 55000 | 3.2896 | - |
1.2686 | 55500 | 3.2694 | - |
1.28 | 56000 | 3.2848 | - |
1.2914 | 56500 | 3.2528 | - |
1.3 | 56875 | - | 0.7554 |
1.3029 | 57000 | 3.2622 | - |
1.3143 | 57500 | 3.2515 | - |
1.3257 | 58000 | 3.2385 | - |
1.3371 | 58500 | 3.2341 | - |
1.3486 | 59000 | 3.2275 | - |
1.3600 | 59500 | 3.2538 | - |
1.3714 | 60000 | 3.2329 | - |
1.3829 | 60500 | 3.2322 | - |
1.3943 | 61000 | 3.2039 | - |
1.4 | 61250 | - | 0.7530 |
1.4057 | 61500 | 3.212 | - |
1.4171 | 62000 | 3.2127 | - |
1.4286 | 62500 | 3.1956 | - |
1.44 | 63000 | 3.202 | - |
1.4514 | 63500 | 3.2046 | - |
1.4629 | 64000 | 3.2105 | - |
1.4743 | 64500 | 3.1915 | - |
1.4857 | 65000 | 3.176 | - |
1.4971 | 65500 | 3.1852 | - |
1.5 | 65625 | - | 0.7541 |
1.5086 | 66000 | 3.1988 | - |
1.52 | 66500 | 3.1714 | - |
1.5314 | 67000 | 3.1816 | - |
1.5429 | 67500 | 3.1745 | - |
1.5543 | 68000 | 3.1674 | - |
1.5657 | 68500 | 3.1887 | - |
1.5771 | 69000 | 3.1567 | - |
1.5886 | 69500 | 3.1775 | - |
1.6 | 70000 | 3.1696 | 0.7535 |
1.6114 | 70500 | 3.154 | - |
1.6229 | 71000 | 3.1553 | - |
1.6343 | 71500 | 3.1675 | - |
1.6457 | 72000 | 3.1516 | - |
1.6571 | 72500 | 3.1569 | - |
1.6686 | 73000 | 3.1403 | - |
1.6800 | 73500 | 3.1667 | - |
1.6914 | 74000 | 3.1545 | - |
1.7 | 74375 | - | 0.7529 |
1.7029 | 74500 | 3.1736 | - |
1.7143 | 75000 | 3.1447 | - |
1.7257 | 75500 | 3.1567 | - |
1.7371 | 76000 | 3.1682 | - |
1.7486 | 76500 | 3.149 | - |
1.76 | 77000 | 3.1522 | - |
1.7714 | 77500 | 3.1412 | - |
1.7829 | 78000 | 3.1268 | - |
1.7943 | 78500 | 3.1476 | - |
1.8 | 78750 | - | 0.7524 |
1.8057 | 79000 | 3.1669 | - |
1.8171 | 79500 | 3.1432 | - |
1.8286 | 80000 | 3.1603 | - |
1.8400 | 80500 | 3.1347 | - |
1.8514 | 81000 | 3.1209 | - |
1.8629 | 81500 | 3.1302 | - |
1.8743 | 82000 | 3.1423 | - |
1.8857 | 82500 | 3.1481 | - |
1.8971 | 83000 | 3.1262 | - |
1.9 | 83125 | - | 0.7525 |
1.9086 | 83500 | 3.1484 | - |
1.92 | 84000 | 3.1331 | - |
1.9314 | 84500 | 3.122 | - |
1.9429 | 85000 | 3.1272 | - |
1.9543 | 85500 | 3.1435 | - |
1.9657 | 86000 | 3.1431 | - |
1.9771 | 86500 | 3.1457 | - |
1.9886 | 87000 | 3.1286 | - |
2.0 | 87500 | 3.1352 | 0.7525 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for bobox/E5-base-unsupervised-TSDAE-2
Base model
intfloat/e5-base-unsupervisedEvaluation results
- Pearson Cosine on sts testself-reported0.765
- Spearman Cosine on sts testself-reported0.752
- Pearson Manhattan on sts testself-reported0.739
- Spearman Manhattan on sts testself-reported0.733
- Pearson Euclidean on sts testself-reported0.740
- Spearman Euclidean on sts testself-reported0.734
- Pearson Dot on sts testself-reported0.500
- Spearman Dot on sts testself-reported0.499
- Pearson Max on sts testself-reported0.765
- Spearman Max on sts testself-reported0.752