whisper-large-rad / README.md
bqtsio's picture
End of training
1ab99a2 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - Dev372/Medical_STT_Dataset_1.1
  - OUTCOMESAI/medical_speech_corpus
  - pauleyc/radiology_audio_3_iphone_laptop_666_samples
metrics:
  - wer
model-index:
  - name: Whisper Large
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Medical STT Combined
          type: Dev372/Medical_STT_Dataset_1.1
        metrics:
          - name: Wer
            type: wer
            value: 2.732222934016656

Whisper Large

This model is a fine-tuned version of openai/whisper-large-v3 on the Medical STT Combined dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0969
  • Wer Ortho: 4.8761
  • Wer: 2.7322

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0787 1.1364 500 0.0969 4.8761 2.7322

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3