nifty_bert / README.md
bubai567's picture
Update README.md
097d4af
metadata
license: cc-by-sa-4.0
base_model: nlpaueb/legal-bert-small-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: bubai567/nifty_bert
    results: []

bubai567/nifty_bert

This model is a fine-tuned version of nlpaueb/legal-bert-small-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0529
  • Train Accuracy: 0.9889
  • Validation Loss: 0.0324
  • Validation Accuracy: 0.9933
  • Epoch: 1

Model description

** Model is not maintained, if you want latest stock/crypto/forex prediction using algo like PPO, A2C, transformers, you can contact me t.me/bbubai ** This model has been trained using 30 days of Nifty index data at 30-minute intervals. In this training dataset, signal values are represented as follows: 1 for peak signals, -1 for valley signals, and 0 for stay signals. The Smooth Z-Score method is employed to extract training samples. For example, a 30x10 input sample might look like this: 0 0 -1 -1 0 0 1 0 0 1. This model uses these samples to predict the direction of the Nifty index for the next 30 minutes.

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 608, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.1528 0.9651 0.0509 0.9914 0
0.0529 0.9889 0.0324 0.9933 1

Framework versions

  • Transformers 4.33.2
  • TensorFlow 2.13.0
  • Datasets 2.14.5
  • Tokenizers 0.13.3