Automatic correction of README.md metadata. Contact [email protected] for any question
bb5af96
metadata
language: ko
tags:
- gpt2
- conversational
license: cc-by-nc-sa-4.0
Ko-DialoGPT
How to use
from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = PreTrainedTokenizerFast.from_pretrained('byeongal/Ko-DialoGPT')
model = GPT2LMHeadModel.from_pretrained('byeongal/Ko-DialoGPT').to(device)
past_user_inputs = []
generated_responses = []
while True:
user_input = input(">> User:")
if user_input == 'bye':
break
text_idx = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
for i in range(len(generated_responses)-1, len(generated_responses)-3, -1):
if i < 0:
break
encoded_vector = tokenizer.encode(generated_responses[i] + tokenizer.eos_token, return_tensors='pt')
if text_idx.shape[-1] + encoded_vector.shape[-1] < 1000:
text_idx = torch.cat([encoded_vector, text_idx], dim=-1)
else:
break
encoded_vector = tokenizer.encode(past_user_inputs[i] + tokenizer.eos_token, return_tensors='pt')
if text_idx.shape[-1] + encoded_vector.shape[-1] < 1000:
text_idx = torch.cat([encoded_vector, text_idx], dim=-1)
else:
break
text_idx = text_idx.to(device)
inference_output = model.generate(
text_idx,
max_length=1000,
num_beams=5,
top_k=20,
no_repeat_ngram_size=4,
length_penalty=0.65,
repetition_penalty=2.0,
)
inference_output = inference_output.tolist()
bot_response = tokenizer.decode(inference_output[0][text_idx.shape[-1]:], skip_special_tokens=True)
print(f"Bot: {bot_response}")
past_user_inputs.append(user_input)
generated_responses.append(bot_response)