cahya's picture
updated the text for inference
9e94865
metadata
language: id
license: mit
datasets:
  - wikipedia
  - id_newspapers_2018
widget:
  - text: ayahku sedang bekerja di sawah untuk [MASK] padi.

Indonesian DistilBERT base model (uncased)

Model description

This model is a distilled version of the Indonesian BERT base model. This model is uncased.

This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models

Intended uses & limitations

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='cahya/distilbert-base-indonesian')
>>> unmasker("Ayahku sedang bekerja di sawah untuk [MASK] padi")

[
  {
    "sequence": "[CLS] ayahku sedang bekerja di sawah untuk menanam padi [SEP]",
    "score": 0.6853187084197998,
    "token": 12712,
    "token_str": "menanam"
  },
  {
    "sequence": "[CLS] ayahku sedang bekerja di sawah untuk bertani padi [SEP]",
    "score": 0.03739545866847038,
    "token": 15484,
    "token_str": "bertani"
  },
  {
    "sequence": "[CLS] ayahku sedang bekerja di sawah untuk memetik padi [SEP]",
    "score": 0.02742469497025013,
    "token": 30338,
    "token_str": "memetik"
  },
  {
    "sequence": "[CLS] ayahku sedang bekerja di sawah untuk penggilingan padi [SEP]",
    "score": 0.02214187942445278,
    "token": 28252,
    "token_str": "penggilingan"
  },
  {
    "sequence": "[CLS] ayahku sedang bekerja di sawah untuk tanam padi [SEP]",
    "score": 0.0185895636677742,
    "token": 11308,
    "token_str": "tanam"
  }
]

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import DistilBertTokenizer, DistilBertModel

model_name='cahya/distilbert-base-indonesian'
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
model = DistilBertModel.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in Tensorflow:

from transformers import DistilBertTokenizer, TFDistilBertModel

model_name='cahya/distilbert-base-indonesian'
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
model = TFDistilBertModel.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

Training data

This model was distiled with 522MB of indonesian Wikipedia and 1GB of indonesian newspapers. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form:

[CLS] Sentence A [SEP] Sentence B [SEP]