Twitter June 2022 (RoBERTa-base, 154M)
This is a RoBERTa-base model trained on 153.86M tweets until the end of June 2022 (15M tweets increment). More details and performance scores are available in the TimeLMs paper.
Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the TimeLMs repository.
For other models trained until different periods, check this table.
Preprocess Text
Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed here.
def preprocess(text):
preprocessed_text = []
for t in text.split():
if len(t) > 1:
t = '@user' if t[0] == '@' and t.count('@') == 1 else t
t = 'http' if t.startswith('http') else t
preprocessed_text.append(t)
return ' '.join(preprocessed_text)
Example Masked Language Model
from transformers import pipeline, AutoTokenizer
MODEL = "cardiffnlp/twitter-roberta-base-mar2022-15M-incr"
fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL)
tokenizer = AutoTokenizer.from_pretrained(MODEL)
def pprint(candidates, n):
for i in range(n):
token = tokenizer.decode(candidates[i]['token'])
score = candidates[i]['score']
print("%d) %.5f %s" % (i+1, score, token))
texts = [
"So glad I'm <mask> vaccinated.",
"I keep forgetting to bring a <mask>.",
"Looking forward to watching <mask> Game tonight!",
]
for text in texts:
t = preprocess(text)
print(f"{'-'*30}\n{t}")
candidates = fill_mask(t)
pprint(candidates, 5)
Output:
------------------------------
So glad I'm <mask> vaccinated.
1) 0.35668 not
2) 0.27636 fully
3) 0.18418 getting
4) 0.03197 still
5) 0.02259 triple
------------------------------
I keep forgetting to bring a <mask>.
1) 0.04261 book
2) 0.04233 backpack
3) 0.04161 charger
4) 0.03892 mask
5) 0.03636 lighter
------------------------------
Looking forward to watching <mask> Game tonight!
1) 0.55292 the
2) 0.17813 The
3) 0.03052 this
4) 0.01565 Championship
5) 0.01391 End
Example Tweet Embeddings
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
from scipy.spatial.distance import cosine
from collections import Counter
def get_embedding(text): # naive approach for demonstration
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy()
return np.mean(features[0], axis=0)
MODEL = "cardiffnlp/twitter-roberta-base-mar2022-15M-incr"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModel.from_pretrained(MODEL)
query = "The book was awesome"
tweets = ["I just ordered fried chicken ๐ฃ",
"The movie was great",
"What time is the next game?",
"Just finished reading 'Embeddings in NLP'"]
sims = Counter()
for tweet in tweets:
sim = 1 - cosine(get_embedding(query), get_embedding(tweet))
sims[tweet] = sim
print('Most similar to: ', query)
print(f"{'-'*30}")
for idx, (tweet, sim) in enumerate(sims.most_common()):
print("%d) %.5f %s" % (idx+1, sim, tweet))
Output:
Most similar to: The book was awesome
------------------------------
1) 0.98951 The movie was great
2) 0.96042 Just finished reading 'Embeddings in NLP'
3) 0.95454 I just ordered fried chicken ๐ฃ
4) 0.95148 What time is the next game?
Example Feature Extraction
from transformers import AutoTokenizer, AutoModel, TFAutoModel
import numpy as np
MODEL = "cardiffnlp/twitter-roberta-base-mar2022-15M-incr"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
text = "Good night ๐"
text = preprocess(text)
# Pytorch
model = AutoModel.from_pretrained(MODEL)
encoded_input = tokenizer(text, return_tensors='pt')
features = model(**encoded_input)
features = features[0].detach().cpu().numpy()
features_mean = np.mean(features[0], axis=0)
#features_max = np.max(features[0], axis=0)
# # Tensorflow
# model = TFAutoModel.from_pretrained(MODEL)
# encoded_input = tokenizer(text, return_tensors='tf')
# features = model(encoded_input)
# features = features[0].numpy()
# features_mean = np.mean(features[0], axis=0)
# #features_max = np.max(features[0], axis=0)
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.