|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: slurp-slot_baseline-xlm_r-en |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# slurp-slot_baseline-xlm_r-en |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the SLURP dataset. |
|
|
|
It achieves the following results on the test set: |
|
- Loss: 0.3263 |
|
- Precision: 0.7954 |
|
- Recall: 0.8413 |
|
- F1: 0.8177 |
|
- Accuracy: 0.9268 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 1.1437 | 1.0 | 720 | 0.5236 | 0.6852 | 0.6623 | 0.6736 | 0.8860 | |
|
| 0.5761 | 2.0 | 1440 | 0.3668 | 0.7348 | 0.7829 | 0.7581 | 0.9119 | |
|
| 0.3087 | 3.0 | 2160 | 0.2996 | 0.7925 | 0.8280 | 0.8099 | 0.9270 | |
|
| 0.2631 | 4.0 | 2880 | 0.2959 | 0.7872 | 0.8487 | 0.8168 | 0.9275 | |
|
| 0.1847 | 5.0 | 3600 | 0.3121 | 0.7929 | 0.8373 | 0.8145 | 0.9290 | |
|
| 0.1518 | 6.0 | 4320 | 0.3117 | 0.8080 | 0.8601 | 0.8332 | 0.9329 | |
|
| 0.1232 | 7.0 | 5040 | 0.3153 | 0.7961 | 0.8490 | 0.8217 | 0.9267 | |
|
| 0.0994 | 8.0 | 5760 | 0.3125 | 0.8105 | 0.8570 | 0.8331 | 0.9332 | |
|
| 0.0968 | 9.0 | 6480 | 0.3242 | 0.8147 | 0.8637 | 0.8385 | 0.9329 | |
|
| 0.0772 | 10.0 | 7200 | 0.3263 | 0.8145 | 0.8641 | 0.8386 | 0.9341 | |
|
|
|
## Test results per slot |
|
|
|
| slot | f1 | tc_size | |
|
|:----:|:--:|:-------:| |
|
| alarm_type | 0.4 | 4 | |
|
| app_name | 0.42857142857142855 | 10 | |
|
| artist_name | 0.8122605363984675 | 123 | |
|
| audiobook_author | 0.0 | 9 | |
|
| audiobook_name | 0.6021505376344087 | 43 | |
|
| business_name | 0.8530259365994236 | 184 | |
|
| business_type | 0.6666666666666667 | 41 | |
|
| change_amount | 0.6666666666666666 | 9 | |
|
| coffee_type | 0.5333333333333333 | 6 | |
|
| color_type | 0.8135593220338982 | 28 | |
|
| cooking_type | 0.8333333333333333 | 14 | |
|
| currency_name | 0.8611111111111112 | 70 | |
|
| date | 0.9034267912772587 | 623 | |
|
| definition_word | 0.88 | 97 | |
|
| device_type | 0.8053691275167785 | 71 | |
|
| drink_type | 0.0 | 2 | |
|
| email_address | 0.9599999999999999 | 38 | |
|
| email_folder | 0.9523809523809523 | 10 | |
|
| event_name | 0.7643504531722054 | 321 | |
|
| food_type | 0.7482014388489208 | 121 | |
|
| game_name | 0.7789473684210527 | 44 | |
|
| general_frequency | 0.5862068965517242 | 21 | |
|
| house_place | 0.8840579710144928 | 68 | |
|
| ingredient | 0.0 | 13 | |
|
| joke_type | 0.9411764705882353 | 17 | |
|
| list_name | 0.7979274611398963 | 91 | |
|
| meal_type | 0.782608695652174 | 18 | |
|
| media_type | 0.8596491228070176 | 173 | |
|
| movie_name | 0.0 | 3 | |
|
| movie_type | 0.5 | 3 | |
|
| music_album | 0.0 | 2 | |
|
| music_descriptor | 0.25 | 8 | |
|
| music_genre | 0.7244094488188977 | 58 | |
|
| news_topic | 0.5675675675675675 | 64 | |
|
| order_type | 0.7941176470588235 | 29 | |
|
| person | 0.9128094725511302 | 438 | |
|
| personal_info | 0.6666666666666666 | 16 | |
|
| place_name | 0.8725790010193679 | 493 | |
|
| player_setting | 0.5405405405405405 | 42 | |
|
| playlist_name | 0.5 | 27 | |
|
| podcast_descriptor | 0.4888888888888888 | 28 | |
|
| podcast_name | 0.5245901639344263 | 31 | |
|
| radio_name | 0.6504065040650406 | 53 | |
|
| relation | 0.8478260869565218 | 87 | |
|
| song_name | 0.7058823529411765 | 54 | |
|
| time | 0.7914893617021276 | 236 | |
|
| time_zone | 0.7804878048780488 | 23 | |
|
| timeofday | 0.8396946564885496 | 60 | |
|
| transport_agency | 0.8571428571428571 | 18 | |
|
| transport_descriptor | 0.0 | 2 | |
|
| transport_name | 0.4 | 7 | |
|
| transport_type | 0.9481481481481482 | 68 | |
|
| weather_descriptor | 0.789272030651341 | 123 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|