xlm-r-base-amazon-massive-slot

This model is a fine-tuned version of xlm-roberta-base on the MASSIVE1.1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5006
  • Precision: 0.8144
  • Recall: 0.8683
  • F1: 0.8405
  • Accuracy: 0.9333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
1.1445 1.0 720 0.5446 0.6681 0.6770 0.6725 0.8842
0.5908 2.0 1440 0.3869 0.7331 0.7706 0.7514 0.9083
0.3228 3.0 2160 0.3285 0.7658 0.8288 0.7961 0.9219
0.2561 4.0 2880 0.3063 0.7819 0.8402 0.8100 0.9257
0.1808 5.0 3600 0.3000 0.8011 0.8429 0.8214 0.9305
0.1487 6.0 4320 0.2982 0.8201 0.8492 0.8344 0.9361
0.1156 7.0 5040 0.3252 0.8009 0.8569 0.8280 0.9313
0.094 8.0 5760 0.3481 0.8127 0.8502 0.8310 0.9333
0.0843 9.0 6480 0.3764 0.7990 0.8613 0.8290 0.9304
0.0641 10.0 7200 0.3822 0.7930 0.8609 0.8256 0.9280
0.0547 11.0 7920 0.3889 0.8223 0.8649 0.8431 0.9354
0.04 12.0 8640 0.4416 0.8019 0.8633 0.8314 0.9288
0.0368 13.0 9360 0.4339 0.8117 0.8606 0.8354 0.9328
0.0297 14.0 10080 0.4698 0.8062 0.8623 0.8333 0.9314
0.0227 15.0 10800 0.4763 0.8058 0.8656 0.8346 0.9327
0.0185 16.0 11520 0.4793 0.8124 0.8613 0.8361 0.9326
0.0182 17.0 12240 0.4835 0.8191 0.8629 0.8404 0.9341
0.0147 18.0 12960 0.4981 0.8140 0.8693 0.8407 0.9336
0.0111 19.0 13680 0.5002 0.8099 0.8719 0.8398 0.9340
0.0128 20.0 14400 0.5006 0.8144 0.8683 0.8405 0.9333

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1

Citation

@article{kubis2023back,
  title={Back Transcription as a Method for Evaluating Robustness of Natural Language Understanding Models to Speech Recognition Errors},
  author={Kubis, Marek and Sk{\'o}rzewski, Pawe{\l} and Sowa{\'n}ski, Marcin and Zi{\k{e}}tkiewicz, Tomasz},
  journal={arXiv preprint arXiv:2310.16609},
  year={2023}
  eprint={2310.16609},
  archivePrefix={arXiv},
}
Downloads last month
184
Safetensors
Model size
278M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cartesinus/xlm-r-base-amazon-massive-slot

Finetuned
(2715)
this model

Dataset used to train cartesinus/xlm-r-base-amazon-massive-slot

Evaluation results