You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Medical-Finetune-BioMistral

This model is a fine-tuned version of BioMistral/BioMistral-7B on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9639
  • F1: 0.0
  • Accuracy: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy
0.7654 0.3436 100 2.8037 0.0 0.0
1.9543 0.6873 200 2.1952 0.0 0.0
1.9931 1.0309 300 2.1921 0.0143 0.0143
1.3308 1.3746 400 2.2393 0.0 0.0
1.4068 1.7182 500 2.2237 0.0 0.0
1.2879 2.0619 600 2.4974 0.0 0.0
0.7795 2.4055 700 2.3918 0.0 0.0
0.8464 2.7491 800 2.4622 0.0143 0.0143
0.7941 3.0928 900 2.6181 0.0 0.0
0.4868 3.4364 1000 2.6465 0.0 0.0
0.5224 3.7801 1100 2.6711 0.0 0.0
0.5074 4.1237 1200 2.8354 0.0 0.0
0.3309 4.4674 1300 2.8183 0.0 0.0
0.3761 4.8110 1400 2.8540 0.0 0.0
0.3173 5.1546 1500 2.9639 0.0 0.0

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for chandrasekhar319/Medical-Finetune-BioMistral

Adapter
(14)
this model