|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: charisgao/wnc-pretrain |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# model |
|
|
|
This model is a fine-tuned version of [charisgao/wnc-pretrain](https://huggingface.co/charisgao/wnc-pretrain) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7055 |
|
- Precision: 0.8153 |
|
- Recall: 0.905 |
|
- F1: 0.8578 |
|
- Accuracy: 0.8071 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.486 | 0.8547 | 100 | 0.5181 | 0.8224 | 0.8627 | 0.8421 | 0.7871 | |
|
| 0.4273 | 1.7094 | 200 | 0.5258 | 0.8095 | 0.9167 | 0.8598 | 0.8032 | |
|
| 0.3528 | 2.5641 | 300 | 0.7278 | 0.8072 | 0.8824 | 0.8431 | 0.7839 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|