extension1 / README.md
charisgao's picture
5300-extension1
f1881a5 verified
---
library_name: transformers
license: mit
base_model: charisgao/wnc-pretrain
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model
This model is a fine-tuned version of [charisgao/wnc-pretrain](https://huggingface.co/charisgao/wnc-pretrain) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7055
- Precision: 0.8153
- Recall: 0.905
- F1: 0.8578
- Accuracy: 0.8071
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.486 | 0.8547 | 100 | 0.5181 | 0.8224 | 0.8627 | 0.8421 | 0.7871 |
| 0.4273 | 1.7094 | 200 | 0.5258 | 0.8095 | 0.9167 | 0.8598 | 0.8032 |
| 0.3528 | 2.5641 | 300 | 0.7278 | 0.8072 | 0.8824 | 0.8431 | 0.7839 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3