model

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6682
  • Precision: 0.1905
  • Recall: 0.5929
  • F1: 0.2884
  • Accuracy: 0.7439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.6693 0.4292 100 0.6514 0.1965 0.4060 0.2648 0.8027
0.6306 0.8584 200 0.6153 0.1557 0.6739 0.2530 0.6517
0.5589 1.2876 300 0.6298 0.1694 0.6552 0.2693 0.6887
0.552 1.7167 400 0.6102 0.1726 0.6355 0.2715 0.7015
0.5035 2.1459 500 0.6432 0.1808 0.6293 0.2809 0.7180
0.4624 2.5751 600 0.6507 0.1904 0.6054 0.2897 0.7402

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
13
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for charisgao/word-detection-1-12

Finetuned
(1390)
this model