|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# model |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0309 |
|
- Precision: 0.2689 |
|
- Recall: 0.2544 |
|
- F1: 0.2615 |
|
- Accuracy: 0.8742 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1094 | 0.4292 | 100 | 1.8029 | 0.3026 | 0.1599 | 0.2092 | 0.8942 | |
|
| 0.1068 | 0.8584 | 200 | 1.7311 | 0.2883 | 0.2617 | 0.2744 | 0.8789 | |
|
| 0.059 | 1.2876 | 300 | 2.0629 | 0.3091 | 0.2212 | 0.2579 | 0.8886 | |
|
| 0.0713 | 1.7167 | 400 | 2.5245 | 0.3529 | 0.1308 | 0.1909 | 0.9029 | |
|
| 0.0634 | 2.1459 | 500 | 2.3395 | 0.3122 | 0.1786 | 0.2272 | 0.8937 | |
|
| 0.0572 | 2.5751 | 600 | 2.2058 | 0.2864 | 0.2347 | 0.2580 | 0.8819 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|