Llama-3.1-8B-Instruct-sft-1000

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the bct_non_cot_sft_1000 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0757

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss
0.074 1.7778 50 0.0757
0.0309 3.5556 100 0.0856
0.012 5.3333 150 0.1149
0.0034 7.1111 200 0.1489
0.0024 8.8889 250 0.1494

Framework versions

  • PEFT 0.12.0
  • Transformers 4.45.2
  • Pytorch 2.3.0
  • Datasets 2.19.0
  • Tokenizers 0.20.0
Downloads last month
15
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for chchen/Llama-3.1-8B-Instruct-SFT-1000

Adapter
(606)
this model