distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.2469
- Accuracy: 0.9458
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 318 | 3.1622 | 0.7468 |
3.6918 | 2.0 | 636 | 1.5555 | 0.8565 |
3.6918 | 3.0 | 954 | 0.7728 | 0.9142 |
1.3257 | 4.0 | 1272 | 0.4589 | 0.9319 |
0.431 | 5.0 | 1590 | 0.3350 | 0.9426 |
0.431 | 6.0 | 1908 | 0.2879 | 0.9406 |
0.1752 | 7.0 | 2226 | 0.2609 | 0.9465 |
0.0893 | 8.0 | 2544 | 0.2512 | 0.9455 |
0.0893 | 9.0 | 2862 | 0.2488 | 0.9452 |
0.062 | 10.0 | 3180 | 0.2469 | 0.9458 |
Framework versions
- Transformers 4.18.0
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for chris-santiago/distilbert-base-uncased-distilled-clinc
Base model
distilbert/distilbert-base-uncased