w2v-bert-2.0-wol-v1

This model is a fine-tuned version of facebook/w2v-bert-2.0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1008
  • Wer: 0.0792

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.6351 0.6857 300 0.2974 0.3040
0.4591 1.3714 600 0.2215 0.2307
0.3833 2.0571 900 0.1950 0.1900
0.329 2.7429 1200 0.1637 0.1614
0.2797 3.4286 1500 0.1515 0.1479
0.2558 4.1143 1800 0.1435 0.1337
0.2166 4.8 2100 0.1296 0.1295
0.1876 5.4857 2400 0.1178 0.1129
0.1695 6.1714 2700 0.1107 0.1005
0.137 6.8571 3000 0.1064 0.0933
0.1078 7.5429 3300 0.1049 0.0929
0.0904 8.2286 3600 0.1002 0.0871
0.0685 8.9143 3900 0.0973 0.0810
0.049 9.6 4200 0.1008 0.0792

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cibfaye/w2v-bert-2.0-wol-v1

Finetuned
(240)
this model