sft_aitw_all

This model is a fine-tuned version of Qwen/Qwen2-VL-2B-Instruct on the vl_sft_data_aitw dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1.0

Training results

Framework versions

  • PEFT 0.12.0
  • Transformers 4.45.0
  • Pytorch 2.4.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for cjfcsjt/142_sft_aitw_all_2b

Base model

Qwen/Qwen2-VL-2B
Adapter
(47)
this model