wav2vec2-xls-r-parlaspeech-hr
This model for Croatian ASR is based on the facebook/wav2vec2-xls-r-300m model and was fine-tuned with 300 hours of recordings and transcripts from the ASR Croatian parliament dataset ParlaSpeech-HR v1.0.
If you use this model, please cite the following paper:
Nikola LjubeΕ‘iΔ, Danijel KorΕΎinek, Peter Rupnik, Ivo-Pavao Jazbec. ParlaSpeech-HR -- a freely available ASR dataset for Croatian bootstrapped from the ParlaMint corpus. http://www.lrec-conf.org/proceedings/lrec2022/workshops/ParlaCLARINIII/pdf/2022.parlaclariniii-1.16.pdf
Metrics
Evaluation is performed on the dev and test portions of the ParlaSpeech-HR v1.0 dataset.
split | CER | WER |
---|---|---|
dev | 0.0335 | 0.1046 |
test | 0.0234 | 0.0761 |
There are multiple models available, and in terms of CER and WER, the best-performing model is wav2vec2-large-slavic-parlaspeech-hr-lm.
Usage in transformers
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import soundfile as sf
import torch
import os
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# load model and tokenizer
processor = Wav2Vec2Processor.from_pretrained(
"classla/wav2vec2-xls-r-parlaspeech-hr")
model = Wav2Vec2ForCTC.from_pretrained("classla/wav2vec2-xls-r-parlaspeech-hr")
# download the example wav files:
os.system("wget https://huggingface.co/classla/wav2vec2-xls-r-parlaspeech-hr/raw/main/00020570a.flac.wav")
# read the wav file
speech, sample_rate = sf.read("00020570a.flac.wav")
input_values = processor(speech, sampling_rate=sample_rate, return_tensors="pt").input_values.to(device)
# remove the raw wav file
os.system("rm 00020570a.flac.wav")
# retrieve logits
logits = model.to(device)(input_values).logits
# take argmax and decode
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.decode(predicted_ids[0]).lower()
# transcription: 'veliki broj poslovnih subjekata posluje sa minusom velik dio'
Training hyperparameters
In fine-tuning, the following arguments were used:
arg | value |
---|---|
per_device_train_batch_size |
16 |
gradient_accumulation_steps |
4 |
num_train_epochs |
8 |
learning_rate |
3e-4 |
warmup_steps |
500 |
- Downloads last month
- 38,389